
Graylog Documentation
Release 1.1.6

Graylog, Inc.

Aug 04, 2017

Contents

1 Architectural considerations 3
1.1 Minimum setup . 3
1.2 Bigger production setup . 4
1.3 Highly available setup with Graylog Radio . 5

2 Installing Graylog 7
2.1 Virtual Machine Appliances . 8
2.2 The graylog-ctl script . 11
2.3 Operating System Packages . 14
2.4 Chef, Puppet, Ansible, Vagrant . 16
2.5 Docker . 16
2.6 Vagrant . 20
2.7 OpenStack . 21
2.8 Amazon Web Services . 22
2.9 Microsoft Windows . 22
2.10 Manual Setup . 23

3 Configuring and tuning Elasticsearch 31
3.1 Configuration . 31
3.2 Cluster Status explained . 33

4 Sending in log data 35
4.1 What are Graylog message inputs? . 35
4.2 Content packs . 35
4.3 Syslog . 35
4.4 GELF / Sending from applications . 37
4.5 Microsoft Windows . 37
4.6 Heroku . 37
4.7 Ruby on Rails . 40
4.8 Raw/Plaintext inputs . 41
4.9 JSON path from HTTP API input . 41
4.10 Reading from files . 42

5 Graylog Collector 45
5.1 Installation . 45
5.2 Configuration . 49
5.3 Running Graylog Collector . 56

i

5.4 Command Line Options . 58
5.5 Troubleshooting . 59

6 Search query language 61
6.1 Syntax . 61
6.2 Escaping . 63
6.3 Time frame selector . 63
6.4 Search result highlighting . 63

7 Streams 65
7.1 What are streams? . 65
7.2 Alerts . 66
7.3 Outputs . 69
7.4 Use cases . 69
7.5 How are streams processed internally? . 70
7.6 Stream Processing Runtime Limits . 71
7.7 Programmatic access via the REST API . 72
7.8 FAQs . 73

8 Dashboards 75
8.1 Why dashboards matter . 75
8.2 How to use dashboards . 76
8.3 Examples . 77
8.4 Widgets from streams . 78
8.5 Modifying dashboards . 78
8.6 Dashboard permissions . 79

9 Extractors 81
9.1 The problem explained . 81
9.2 Graylog extractors explained . 81
9.3 The extractor directory . 82
9.4 Using regular expressions to extract data . 83
9.5 Using Grok patterns to extract data . 84
9.6 Normalization . 85

10 Message rewriting with Drools 89
10.1 Getting Started . 89
10.2 Example rules file . 89
10.3 Parsing Message and adding fields . 90

11 Load balancer integration 93
11.1 Load balancer state . 93
11.2 Graceful shutdown . 94
11.3 Web Interface . 94

12 The Graylog index model explained 95
12.1 Overview . 95
12.2 Eviction of indices and messages . 97
12.3 Keeping the metadata in synchronisation . 97
12.4 Manually cycling the deflector . 97

13 Indexer failures and dead letters 99
13.1 Indexer failures . 99
13.2 Dead letters . 100
13.3 Common indexer failure reasons . 101

ii

14 Plugins 103
14.1 General information . 103
14.2 Creating a plugin skeleton . 103
14.3 Example Alarm Callback plugin . 104
14.4 Building plugins . 105
14.5 Installing and loading plugins . 105

15 External dashboards 107
15.1 CLI stream dashboard . 107
15.2 Browser stream dashboard . 108

16 Graylog Marketplace 111
16.1 GitHub integration . 112
16.2 General best practices . 112
16.3 Contributing plug-ins . 112
16.4 Contributing content packs . 113
16.5 Contributing GELF libraries . 113
16.6 Contributing other content . 113

17 Frequently asked questions 115
17.1 General . 115
17.2 Message parsing . 116

18 The thinking behind the Graylog architecture and why it matters to you 117
18.1 A short history of Graylog . 117
18.2 The log management market today . 117
18.3 The future . 119

19 Changelog 121
19.1 Graylog 1.1.6 . 121
19.2 Graylog 1.1.5 . 121
19.3 Graylog 1.1.4 . 122
19.4 Graylog 1.1.3 . 122
19.5 Graylog 1.1.2 . 122
19.6 Graylog 1.1.1 . 123
19.7 Graylog 1.1.0 . 124
19.8 Graylog 1.1.0-rc.3 . 124
19.9 Graylog 1.1.0-rc.1 . 125
19.10 Graylog 1.1.0-beta.3 . 125
19.11 Graylog 1.1.0-beta.2 . 126
19.12 Graylog 1.0.2 . 127
19.13 Graylog 1.0.1 . 127
19.14 Graylog 1.0.0 . 128
19.15 Graylog 1.0.0-rc.4 . 128
19.16 Graylog 1.0.0-rc.3 . 129
19.17 Graylog 1.0.0-rc.2 . 129
19.18 Graylog 1.0.0-rc.1 . 130
19.19 Graylog 1.0.0-beta.2 . 131
19.20 Graylog 1.0.0-beta.2 . 132
19.21 Graylog2 0.92.4 . 132
19.22 Graylog 1.0.0-beta.1 . 133
19.23 Graylog2 0.92.3 . 133
19.24 Graylog2 0.92.1 . 133
19.25 Graylog2 0.92.0 . 134
19.26 Graylog2 0.92.0-rc.1 . 134

iii

19.27 Graylog2 0.91.3 . 135
19.28 Graylog2 0.91.3 . 135
19.29 Graylog2 0.92.0-beta.1 . 135
19.30 Graylog2 0.91.1 . 136
19.31 Graylog2 0.90.1 . 136
19.32 Graylog2 0.91.0-rc.1 . 137
19.33 Graylog2 0.90.0 . 137
19.34 Graylog2 0.20.3 . 137
19.35 Graylog2 0.20.2 . 138

iv

Graylog Documentation, Release 1.1.6

NOTE: There are multiple options for reading this documentation. See link to the lower left.

Contents:

Contents 1

Graylog Documentation, Release 1.1.6

2 Contents

CHAPTER 1

Architectural considerations

There are a few rules of thumb when scaling resources for Graylog:

• graylog-server nodes should have a focus on CPU power.

• Elasticsearch nodes should have as much RAM as possible and the fastest disks you can get. Everything depends
on I/O speed here.

• MongoDB is only being used to store configuration and the dead letter messages, and can be sized fairly small.

• graylog-web-interface nodes are mostly waiting for HTTP answers of the rest of the system and can
also be rather small.

• graylog-radio nodes act as workers. They don’t know each other and you can shut them down at any point
in time without changing the cluster state at all.

Also keep in mind that messages are only stored in Elasticsearch. If you have data loss on Elasticsearch, the messages
are gone - except if you have created backups of the indices.

MongoDB is only storing meta information and will be abstracted with a general database layer in future versions.
This will allow you to use other databases like MySQL instead.

Minimum setup

This is a minimum Graylog setup that can be used for smaller, non-critical, or test setups. None of the components is
redundant but it is easy and quick to setup.

3

Graylog Documentation, Release 1.1.6

Bigger production setup

This is a setup for bigger production environments. It has several graylog-server nodes behind a load balancer
that share the processing load. The load balancer can ping the graylog-server nodes via REST/HTTP to check
if they are alive and take dead nodes out of the cluster.

4 Chapter 1. Architectural considerations

Graylog Documentation, Release 1.1.6

Highly available setup with Graylog Radio

Beginning with Graylog 1.0 on, we no longer recommend running Graylog Radio because we are now using a high-
performant message journal (from the Apache Kafka project) in every graylog-server instance which is spooling all
incoming messages to disk immediately and is able to buffer load spikes just at least as good as Graylog Radio was,
but with less dependencies and maintenance overhead.

1.3. Highly available setup with Graylog Radio 5

Graylog Documentation, Release 1.1.6

If you are running a setup with Graylog Radio we recommend to shut down the Graylog Radio architecture including
AMQP or Kafka brokers completely and directly send messages to the graylog-server nodes. If you have been using
Graylog Radio for load balancing, you should now put a classic load balancer in front of your graylog-server nodes.

This approach has been proven to work great in large high-throughput setups of several of our large scale
customers and immensely reduced complexity of their setups.

The Kafka and AMQP inputs are still supported and can be used to build a custom setup using message brokers, if you
want to keep using that. A reason for this might be that Graylog is not the only subscriber to the messages on the bus.
However we would recommend to use Graylog forwarders to either write to a message bus after processing or write to
other systems directly.

6 Chapter 1. Architectural considerations

CHAPTER 2

Installing Graylog

Modern server architectures and configurations are managed in many different ways. Some people still put new soft-
ware somewhere in opt manually for each server while others have already jumped on the configuration management
train and fully automated reproducible setups.

Graylog can be installed in many different ways so you can pick whatever works best for you. We recommend to
start with the virtual machine appliances for the fastest way to get started and then pick one of the other, more flexible
installation methods to build an easier to scale setup. (Note: The virtual machine appliances are suitable for production
usage because they are also prepared to scale out to some level when required.)

System requirements

The Graylog server application has the following prerequisites:

• Some modern Linux distribution (Debian Linux, Ubuntu Linux, or CentOS recommended)

• Elasticsearch 1.6.2 or later (Elasticsearch 2.x is currently not supported)

• MongoDB 2.0 or later (latest stable version is recommended)

• Oracle Java SE 7 or later (Oracle Java SE 8 is supported, OpenJDK 7 and OpenJDK 8 also work; latest stable
update is recommended)

The Graylog web interface has the following prerequisites:

• Some modern Linux distribution (Debian Linux, Ubuntu Linux, or CentOS recommended)

• Oracle Java SE 7 or later (Oracle Java SE 8 is supported, OpenJDK 7 and OpenJDK 8 also work; latest point
release is recommended)

This chapter is explaining the many ways to install Graylog and aims to help choosing the one that fits your needs.

Choose an installation method:

7

https://www.elastic.co/downloads/elasticsearch
https://docs.mongodb.org/manual/administration/install-on-linux/

Graylog Documentation, Release 1.1.6

Virtual Machine Appliances

Download

Download the OVA image from here and save it to your disk locally.

Run the image

You can run the OVA in many systems like VMware or Virtualbox. In this example we will guide you through running
the OVA in the free Virtualbox on OSX.

In Virtualbox select File -> Import appliance:

Hit Continue and keep the suggested settings on the next page as they are. Make sure that you have enough RAM and
CPUs on your local machine. You can lower the resources the virtual machine will get assigned but we recommend to
not lower it to ensure a good Graylog experience. In fact you might have to raise it if you plan to scale out later and
send more messages into Graylog.

Press Import to finish loading the OVA into Virtualbox:

8 Chapter 2. Installing Graylog

https://github.com/Graylog2/graylog2-images/tree/master/ova
http://www.vmware.com
https://www.virtualbox.org

Graylog Documentation, Release 1.1.6

You can now start the VM and should see a login shell like this when the boot completed:

2.1. Virtual Machine Appliances 9

Graylog Documentation, Release 1.1.6

Logging in

You can log into the shell of the operating system of the appliance with the user ubuntu and the password ubuntu. You
should of course change those credentials if you plan to go into production with the appliance.

The web interface is reachable on port 80 at the IP address of your virtual machine. The login prompt of the shell is
showing you this IP address, too. (See screenshot above)

The standard user for the web interface is admin with the password admin.

Basic configuration

We are shipping the graylog-ctl tool with the virtual machine appliances to get you started with a customised
setup as quickly as possible. Run these (optional) commands to configure the most basic settings of Graylog in the
appliance:

sudo graylog-ctl set-email-config <smtp server> [--port=<smtp port> --user=<username>
→˓--password=<password>]
sudo graylog-ctl set-admin-password <password>

10 Chapter 2. Installing Graylog

Graylog Documentation, Release 1.1.6

sudo graylog-ctl set-timezone <zone acronym>
sudo graylog-ctl reconfigure

The graylog-ctl has much more functionality and is documented here. We strongly recommend to learn more
about it to ensure smooth operation of your virtual appliance.

The graylog-ctl script

Some packages of Graylog (for example the virtual machine appliances) ship with a pre-installed graylog-ctl
script to allow you easy configuration of certain settings.

Important: The manual setup, operating system packages, configuration management scripts etc are not shipping
with this.

Configuration commands

The following commands are changing the configuration of Graylog:

Command Description
sudo graylog-ctl set-admin-password <password> Set a new admin password
sudo graylog-ctl set-admin-username <username> Set a different username for the admin user
sudo graylog-ctl set-email-config <smtp server>
[–port=<smtp port> –user=<username>
–password=<password> –no-tls –no-ssl]

Configure SMTP settings to send alert mails

sudo graylog-ctl set-timezone <zone acronym> Set Graylog’s timezone. Make sure system time is
also set correctly with sudo
dpkg-reconfigure tzdata

sudo graylog-ctl set-retention –size=<Gb> OR
–time=<hours> –indices=<number> [–journal=<Gb>]

Configure message retention

sudo graylog-ctl enforce-ssl Enforce HTTPs for the web interface

After setting one or more of these options re-run:

sudo graylog-ctl reconfigure

You can also edit the full configuration files under /opt/graylog/conf manually. restart the related service
afterwards:

sudo graylog-ctl restart graylog-server

Or to restart all services:

sudo graylog-ctl restart

Multi VM setup

At some point it makes sense to not run all services in one VM anymore. For performance reasons you maybe want to
add more Elasticsearch nodes or want to run the web interface separately from the server components. You can reach
this by changing IP addresses in the Graylog configuration files or you can use our canned configurations which come
with the graylog-ctl command.

2.2. The graylog-ctl script 11

Graylog Documentation, Release 1.1.6

The idea is to have one VM which is a central point for other VMs to fetch all needed configuration settings to join
your cluster. Typically the first VM you spin up is used for this task. Automatically an instance of etcd is started and
filled with the necessary settings for other hosts.

For example to split the web interface from the rest of the setup, spin up two VMs from the same graylog image. On
the first only start graylog-server, elasticsearch and mongodb:

vm1> sudo graylog-ctl set-admin-password sEcReT
vm1> sudo graylog-ctl reconfigure-as-backend

On the second VM, start only the web interface but before set the IP of the first VM to fetch configuration data from:

vm2> sudo graylog-ctl set-cluster-master <ip-of-vm1>
vm2> sudo graylog-ctl reconfigure-as-webinterface

This results in a perfectly fine dual VM setup. However if you want to scale this setup out by adding an additional
Elasticsearch node, you can proceed in the same way:

vm3> sudo graylog-ctl set-cluster-master <ip-of-vm1>
vm3> sudo graylog-ctl reconfigure-as-datanode

The following configuration modes do exist:

Command Services
sudo graylog-ctl reconfigure Run all services on this box
sudo graylog-ctl reconfigure-as-backend Run graylog-server, elasticsearch and mongodb
sudo graylog-ctl reconfigure-as-webinterface Run only the web interface
sudo graylog-ctl reconfigure-as-datanode Run only elasticsearch
sudo graylog-ctl reconfigure-as-server Run graylog-server and mongodb (no elasticsearch)

Extend disk space

All data is stored in one directory /var/opt/graylog/data. In order to extend the disk space mount a second
drive on this path. Make sure to move old data to the new drive before and give the graylog user permissions to read
and write here.

Install Graylog plugins

The Graylog plugin directory is located in /opt/graylog/plugin/. Just drop a JAR file there and restart the
server with sudo graylog-ctl restart graylog-server to load the plugin.

Install Elasticsearch plugins

Elasticsearch comes with a helper program to install additional plugins you can call it like this sudo JAVA_HOME=/
opt/graylog/embedded/jre /opt/graylog/elasticsearch/bin/plugin

Install custom SSL certificates

During the first reconfigure run self signed SSL certificates are generated. You can replace this certificate
with your own to prevent security warnings in your browser. Just drop the key and combined certificate file
here: /opt/graylog/conf/nginx/ca/graylog.crt respectively /opt/graylog/conf/nginx/ca/
graylog.key. Afterwards restart nginx with sudo graylog-ctl restart nginx.

12 Chapter 2. Installing Graylog

Graylog Documentation, Release 1.1.6

Configure Message Retention

Graylog is keeping a defined amount of messages. It is possible to decide whether you want to have a set storage size
or a set time period of messages. Additionally Graylog writes a so called Journal. This is used to buffer messages in
case of a unreachable Elasticsearch backend. To configure those settings use the set-retention command.

Retention by disk size:

sudo graylog-ctl set-retention --size=3 --indices=10
sudo graylog-ctl reconfigure

Indices would be rotated when they reach a size of 3Gb and Graylog would keep up to 10 indices, resulting in 30Gb
maximum disk space.

Retention by time:

sudo graylog-ctl set-retention --time=24 --indices=30
sudo graylog-ctl reconfigure

Indices would be rotated after 24 hours and 30 indices would be kept, resulting in 30 days of stored logs.

Both commands can be extended with the –journal switch to set the maximum journal size in Gb:

sudo graylog-ctl set-retention --time=24 --indices=30 --journal=5
sudo graylog-ctl reconfigure

Assign a static IP

Per default the appliance make use of DHCP to setup the network. If you want to access Graylog under a static IP
please follow these instructions:

$ sudo ifdown eth0

Edit the file /etc/network/interfaces like this (just the important lines):

auto eth0
iface eth0 inet static
address <static IP address>
netmask <netmask>
gateway <default gateway>
pre-up sleep 2

Activate the new IP and reconfigure Graylog to make use of it:

$ sudo ifup eth0
$ sudo graylog-ctl reconfigure

Wait some time until all services are restarted and running again. Afterwards you should be able to access Graylog
with the new IP.

Upgrade Graylog

Always perform a full backup or snapshot of the appliance before proceeding. Only upgrade if the release notes say
the next version is a drop-in replacement:

2.2. The graylog-ctl script 13

Graylog Documentation, Release 1.1.6

wget https://packages.graylog2.org/releases/graylog2-omnibus/ubuntu/graylog_latest.deb
sudo graylog-ctl stop
sudo dpkg -G -i graylog_latest.deb
sudo graylog-ctl reconfigure

Production readiness

You can use the Graylog appliances (OVA, Docker, AWS, ...) for small production setups but please consider to harden
the security of the box before.

• Set another password for the default ubuntu user

• Disable remote password logins in /etc/ssh/sshd_config and deploy proper ssh keys

• Seperate the box network-wise from the outside, otherwise Elasticsearch can be reached by anyone

If you want to create your own customised setup take a look at our other installation methods.

Operating System Packages

Until configuration management systems made their way into broader markets and many datacenters, one of the most
common ways to install software on Linux servers was to use operating system packages. Debian has DEB, Red Hat
has RPM and many other distributions are based on those or come with own package formats. Online repositories of
software packages and corresponding package managers make installing and configuring new software a matter of a
single command and a few minutes of time.

Graylog offers official DEB and RPM package repositories for the following operating systems.

• Ubuntu 12.04, 14.04

• Debian 7, 8

• CentOS 6, 7

The repositories can be setup by installing a single package. Once that’s done the Graylog packages can be installed
via apt-get or yum. The packages can also be downloaded with a web browser at https://packages.graylog2.org/ if
needed.

Make sure to install and configure Java (>= 7), MongoDB and Elasticsearch before starting the Graylog services.

Ubuntu 14.04

Download and install graylog-1.1-repository-ubuntu14.04_latest.deb via dpkg(1) and also make sure that the
apt-transport-https package is installed:

$ wget https://packages.graylog2.org/repo/packages/graylog-1.1-repository-ubuntu14.04_
→˓latest.deb
$ sudo dpkg -i graylog-1.1-repository-ubuntu14.04_latest.deb
$ sudo apt-get install apt-transport-https
$ sudo apt-get update
$ sudo apt-get install graylog-server graylog-web

After the installation successfully completed, Graylog can be started with the following commands:

$ sudo start graylog-server
$ sudo start graylog-web

14 Chapter 2. Installing Graylog

https://packages.graylog2.org/
https://packages.graylog2.org/repo/packages/graylog-1.1-repository-ubuntu14.04_latest.deb

Graylog Documentation, Release 1.1.6

Ubuntu 12.04

Download and install graylog-1.1-repository-ubuntu12.04_latest.deb via dpkg(1) and also make sure that the
apt-transport-https package is installed:

$ wget https://packages.graylog2.org/repo/packages/graylog-1.1-repository-ubuntu12.04_
→˓latest.deb
$ sudo dpkg -i graylog-1.1-repository-ubuntu12.04_latest.deb
$ sudo apt-get install apt-transport-https
$ sudo apt-get update
$ sudo apt-get install graylog-server graylog-web

After the installation successfully completed, Graylog can be started with the following commands:

$ sudo start graylog-server
$ sudo start graylog-web

Debian 7

Download and install graylog-1.1-repository-debian7_latest.deb via dpkg(1) and also make sure that the
apt-transport-https package is installed:

$ wget https://packages.graylog2.org/repo/packages/graylog-1.1-repository-debian7_
→˓latest.deb
$ sudo dpkg -i graylog-1.1-repository-debian7_latest.deb
$ sudo apt-get install apt-transport-https
$ sudo apt-get update
$ sudo apt-get install graylog-server graylog-web

After the installation successfully completed, Graylog can be started with the following commands:

$ sudo service graylog-server start
$ sudo service graylog-web start

Debian 8

Download and install graylog-1.1-repository-debian8_latest.deb via dpkg(1) and also make sure that the
apt-transport-https package is installed:

$ wget https://packages.graylog2.org/repo/packages/graylog-1.1-repository-debian8_
→˓latest.deb
$ sudo dpkg -i graylog-1.1-repository-debian8_latest.deb
$ sudo apt-get install apt-transport-https
$ sudo apt-get update
$ sudo apt-get install graylog-server graylog-web

After the installation successfully completed, Graylog can be started with the following commands:

$ sudo systemctl start graylog-server
$ sudo systemctl start graylog-web

2.3. Operating System Packages 15

https://packages.graylog2.org/repo/packages/graylog-1.1-repository-ubuntu12.04_latest.deb
https://packages.graylog2.org/repo/packages/graylog-1.1-repository-debian7_latest.deb
https://packages.graylog2.org/repo/packages/graylog-1.1-repository-debian8_latest.deb

Graylog Documentation, Release 1.1.6

CentOS 6

Download and install graylog-1.1-repository-el6_latest.rpm via rpm(8):

$ sudo rpm -Uvh https://packages.graylog2.org/repo/packages/graylog-1.1-repository-
→˓el6_latest.rpm
$ sudo yum install graylog-server graylog-web

After the installation successfully completed, Graylog can be started with the following commands:

$ sudo service graylog-server start
$ sudo service graylog-web start

CentOS 7

Download and install graylog-1.1-repository-el7_latest.rpm via rpm(8):

$ sudo rpm -Uvh https://packages.graylog2.org/repo/packages/graylog-1.1-repository-
→˓el7_latest.rpm
$ sudo yum install graylog-server graylog-web

After the installation successfully completed, Graylog can be started with the following commands:

$ sudo systemctl start graylog-server
$ sudo systemctl start graylog-web

Feedback

Please open an issue in the Github repository if you run into any packaging related issues. Thank you!

Chef, Puppet, Ansible, Vagrant

The DevOps movement turbocharged market adoption of the newest generation of configuration management and
orchestration tools like Chef, Puppet or Ansible. Graylog offers official scripts for all three of them:

• https://supermarket.chef.io/cookbooks/graylog2

• https://forge.puppetlabs.com/graylog2/graylog2

• https://galaxy.ansible.com/list#/roles/3162

There are also official Vagrant images if you want to spin up a local virtual machine quickly:

• https://github.com/Graylog2/graylog2-images/tree/master/vagrant

Docker

Requirements

You need a recent docker version installed, take a look here for instructions.

This will create a container with all Graylog services running:

16 Chapter 2. Installing Graylog

https://packages.graylog2.org/repo/packages/graylog-1.1-repository-el6_latest.rpm
https://packages.graylog2.org/repo/packages/graylog-1.1-repository-el7_latest.rpm
https://github.com/Graylog2/fpm-recipes/issues
https://github.com/Graylog2/fpm-recipes
https://www.chef.io
http://puppetlabs.com
http://www.ansible.com
https://supermarket.chef.io/cookbooks/graylog2
https://forge.puppetlabs.com/graylog2/graylog2
https://galaxy.ansible.com/list#/roles/3162
https://www.vagrantup.com
https://github.com/Graylog2/graylog2-images/tree/master/vagrant
https://docs.docker.com/installation/

Graylog Documentation, Release 1.1.6

$ docker pull graylog2/allinone
$ docker run -t -p 9000:9000 -p 12201:12201 graylog2/allinone

Using the beta container

You can also run a pre-release or beta version of Graylog using Docker. Just replace graylog2/allinone with
graylog2/allinone-beta. Note that you will have to replace this not only in the docker run command above but also
in subsequent commands of this documentation. We only recommend to run beta versions if you are an experienced
Graylog user and know what you are doing.

Usage

After starting the container, your Graylog instance is ready to use. You can reach the web interface by pointing your
browser to the IP address of your Docker host: http://<host IP>:9000

The default login is Username: admin, Password: admin.

How to get log data in

You can create different kinds of inputs under System -> Inputs, however you can only use ports that have been
properly mapped to your docker container, otherwise data will not get through. You already exposed the default GELF
port 12201, so it is a good idea to start a GELF TCP input there.

To start another input you have to expose the right port e.g. to start a raw TCP input on port 5555; stop your container
and recreate it, whilst appending -p 5555:5555 to your run argument. Similarly, the same can be done for UDP by
appending -p 5555:5555/udp option. Then you can send raw text to Graylog like echo ‘first log message’ | nc localhost
5555

Additional options

You can configure the most important aspects of your Graylog instance through environment variables. In order to
set a variable add a -e VARIABLE_NAME option to your docker run command. For example to set another admin
password start your container like this:

$ docker run -t -p 9000:9000 -p 12201:12201 -e GRAYLOG_PASSWORD=SeCuRePwD graylog2/
→˓allinone

2.5. Docker 17

Graylog Documentation, Release 1.1.6

Variable Name Configuration Option
GRAYLOG_PASSWORD Set admin password
GRAYLOG_USERNAME Set username for admin user (default: admin)
GRAYLOG_TIMEZONE Set [timezone

(TZ)](http://en.wikipedia.org/wiki/List_of_tz_database_time_zones) you are in
GRAY-
LOG_SMTP_SERVER

Hostname/IP address of your SMTP server for sending alert mails

GRAYLOG_RETENTION Configure how long or how many logs should be stored
GRAYLOG_NODE_ID Set server node ID (default: random)
GRAY-
LOG_SERVER_SECRET

Set salt for encryption

GRAYLOG_MASTER IP address of a remote master container (see multi container setup)
GRAYLOG_SERVER Run only server components
GRAYLOG_WEB Run web interface only
ES_MEMORY Set memory used by Elasticsearch (syntax: 1024m). Defaults to 60% of host

memory

Examples

Set an admin password:

GRAYLOG_PASSWORD=SeCuRePwD

Change admin username:

GRAYLOG_USERNAME=root

Set your local timezone:

GRAYLOG_TIMEZONE=Europe/Berlin

Set a SMTP server for alert e-mails:

GRAYLOG_SMTP_SERVER="mailserver.com"

Disable TLS/SSL for mail delivery:

GRAYLOG_SMTP_SERVER="mailserver.com --no-tls --no-ssl"

Set SMTP server with port, authentication, backlink URL and changed sender address:

GRAYLOG_SMTP_SERVER="example.com --port=465 --user=username@mailserver.com --
→˓password=SecretPassword --from-email=graylog@example.com --web-url=http://my.
→˓graylog.host"

Set a static server node ID:

GRAYLOG_NODE_ID=de305d54-75b4-431b-adb2-eb6b9e546014

Set a configuration master for linking multiple containers:

GRAYLOG_MASTER=192.168.3.15

Only start server services:

18 Chapter 2. Installing Graylog

http://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Graylog Documentation, Release 1.1.6

GRAYLOG_SERVER=true

Only run web interface:

GRAYLOG_WEB=true

Keep 30Gb of logs, distributed across 10 Elasticsearch indices:

GRAYLOG_RETENTION="--size=3 --indices=10"

Keep one month of logs, distributed across 30 indices with 24 hours of logs each:

GRAYLOG_RETENTION="--time=24 --indices=30"

Limit amount of memory Elasticsearch is using:

ES_MEMORY=2g

Persist data

In order to persist log data and configuration settings mount the Graylog data directory outside the container:

$ docker run -t -p 9000:9000 -p 12201:12201 -e GRAYLOG_NODE_ID=some-rand-omeu-
→˓uidasnodeid -e GRAYLOG_SERVER_SECRET=somesecretsaltstring -v /graylog/data:/var/opt/
→˓graylog/data -v /graylog/logs:/var/log/graylog graylog2/allinone

Please make sure that you always use the same node-ID and server secret. Otherwise your users can’t login or inputs
will not be started after creating a new container on old data.

Other volumes to persist:

Path Description
/var/opt/graylog/data Elasticsearch for raw log data and MongoDB as configuration store
/var/log/graylog Internal logs for all running services
/opt/graylog/plugin Graylog server plugins

Multi container setup

The Omnibus package used for creating the container is able to split Graylog into several components. This works in
a Docker environment as long as your containers run on the same hardware respectively the containers need to have
direct network access between each other. The first started container is the so called master, other containers can grab
configuration options from here.

To setup two containers, one for the web interface and one for the server component do the following:

Start the master with Graylog server parts:

$ docker run -t -p 12900:12900 -p 12201:12201 -p 4001:4001 -e GRAYLOG_SERVER=true
→˓graylog2/allinone

The configuration port 4001 is now accessible through the host IP address.

Start the web interface in a second container and give the host address as master to fetch configuration options:

$ docker run -t -p 9000:9000 -e GRAYLOG_MASTER=<host IP address> -e GRAYLOG_WEB=true
→˓graylog2/allinone

2.5. Docker 19

Graylog Documentation, Release 1.1.6

SSL Support

Graylog comes with a pre-configured SSL configuration. On start-up time a self-signed certificate is generated and
used on port 443 to provide the web interface via HTTPS. Simply expose the port like this:

$ docker run -t -p 443:443 graylog2/allinone

It is also possible to swap the certificate with your own files. To achieve this mount the CA directory to the Docker
host:

$ docker run -t -p 443:443 -v /somepath/ca:/opt/graylog/conf/nginx/ca graylog2/
→˓allinone

If you put a file called /somepath/ca/graylog.crt respectively /somepath/ca/graylog.key in place before starting the
container, Graylog will pick up those files and make use of your own certificate.

Build

To build the image from scratch run:

$ docker build -t graylog .

Vagrant

Requirements

You need a recent vagrant version, take a look here.

Installation

These steps will create a Vagrant virtual machine with all Graylog services running:

$ wget https://raw.githubusercontent.com/Graylog2/graylog2-images/master/vagrant/
→˓Vagrantfile
$ vagrant up

Usage

After starting the virtual machine, your Graylog instance is ready to use. You can reach the web interface by pointing
your browser to the IP address of your localhost: http://<host IP>:9000

The default login is Username: admin, Password: admin.

Basic configuration

We are shipping the graylog-ctl tool with the virtual machine appliances to get you started with a customised
setup as quickly as possible. Run these (optional) commands to configure the most basic settings of Graylog in the
appliance:

20 Chapter 2. Installing Graylog

https://www.vagrantup.com/downloads.html

Graylog Documentation, Release 1.1.6

sudo graylog-ctl set-email-config <smtp server> [--port=<smtp port> --user=<username>
→˓--password=<password>]
sudo graylog-ctl set-admin-password <password>
sudo graylog-ctl set-timezone <zone acronym>
sudo graylog-ctl reconfigure

The graylog-ctl has much more functionality and is documented here. We strongly recommend to learn more
about it to ensure smooth operation of your virtual appliance.

OpenStack

Installation

These steps will download the Graylog image, uncompress it and import it into the Openstack image store:

$ wget https://packages.graylog2.org/releases/graylog2-omnibus/qcow2/graylog.qcow2.gz
$ gunzip graylog.qcow2.gz
$ glance image-create --name='graylog' --is-public=true --container-format=bare --
→˓disk-format=qcow2 --file graylog.qcow2

You should now see an image called graylog in the Openstack web interface under Images

Usage

Launch a new instance of the image, make sure to reserve at least 4GB ram for the instance. After spinning up, login
with the username ubuntu and your selected ssh key. Run the reconfigure program in order to setup Graylog and start
all services:

$ ssh ubuntu@<vm IP>
$ sudo graylog-ctl reconfigure

Open http://<vm ip> in your browser to access the Graylog web interface. Default username and password is admin.

Basic configuration

We are shipping the graylog-ctl tool with the virtual machine appliances to get you started with a customised
setup as quickly as possible. Run these (optional) commands to configure the most basic settings of Graylog in the
appliance:

sudo graylog-ctl set-email-config <smtp server> [--port=<smtp port> --user=<username>
→˓--password=<password>]
sudo graylog-ctl set-admin-password <password>
sudo graylog-ctl set-timezone <zone acronym>
sudo graylog-ctl reconfigure

The graylog-ctl has much more functionality and is documented here. We strongly recommend to learn more
about it to ensure smooth operation of your virtual appliance.

2.7. OpenStack 21

Graylog Documentation, Release 1.1.6

Amazon Web Services

AMIs

Select your AMI and AWS Region.

Usage

• Click on Launch instance for your AWS region to start Graylog into.

• Choose an instance type with at least 4GB memory

• Finish the wizard and spin up the VM.

• Login to the instance as user ubuntu

• Run sudo graylog-ctl reconfigure

• Open port 80 and ports for receiving log messages in the security group of the appliance

Open http://<vm ip> in your browser to access the Graylog web interface. Default username and password is admin.

Basic configuration

We are shipping the graylog-ctl tool with the virtual machine appliances to get you started with a customised
setup as quickly as possible. Run these (optional) commands to configure the most basic settings of Graylog in the
appliance:

sudo graylog-ctl set-email-config <smtp server> [--port=<smtp port> --user=<username>
→˓--password=<password>]
sudo graylog-ctl set-admin-password <password>
sudo graylog-ctl set-timezone <zone acronym>
sudo graylog-ctl reconfigure

The graylog-ctl has much more functionality and is documented here. We strongly recommend to learn more
about it to ensure smooth operation of your virtual appliance.

Microsoft Windows

Unfortunately there is no officially supported way to run Graylog on Microsoft Windows operating systems even
though all parts run on the Java Virtual Machine. We recommend to run the virtual machine appliances on a Windows
host. It should be technically possible to run Graylog on Windows but it is most probably not worth the time to work
your way around the cliffs.

Should you require running Graylog on Windows, you need to disable the message journal in graylog-server by
changing the following setting in the graylog.conf:

message_journal_enabled = false

Due to restrictions of how Windows handles file locking the journal will not work correctly. This will be improved in
future versions.

Please note that this impacts Graylog’s ability to buffer messages, so we strongly recommend running the
Linux-based OVAs on Windows.

22 Chapter 2. Installing Graylog

https://github.com/Graylog2/graylog2-images/tree/1.0/aws

Graylog Documentation, Release 1.1.6

Manual Setup

Prerequisites

You will need to have the following services installed on either the host you are running graylog-server on or
on dedicated machines:

• Elasticsearch 1.6.2 or later (Elasticsearch 2.x is currently not supported)

• MongoDB 2.0 or later (latest stable version is recommended)

• Oracle Java SE 7 or later (Oracle Java SE 8 is supported, OpenJDK 7 and OpenJDK 8 also work; latest stable
update is recommended)

Most standard MongoDB packages of Linux distributions are outdated. Use the official MongoDB APT repository
(available for many distributions and operating systems)

You also must install Java 7 or higher! Java 6 is not compatible with Graylog and will also not receive any more
publicly available bug and security fixes by Oracle.

A more detailed guide for installing the dependencies will follow. The only important thing for Elasticsearch is
that you set the exactly same cluster name (e. g. ‘‘cluster.name: graylog‘‘) that is being used by Graylog in the
Elasticsearch configuration (‘‘conf/elasticsearch.yml‘‘).

Downloading and extracting the server

Download the tar archive from the download pages and extract it on your system:

~$ tar xvfz graylog-VERSION.tgz
~$ cd graylog-VERSION

Configuration

Now copy the example configuration file:

~# cp graylog.conf.example /etc/graylog/server/server.conf

You can leave most variables as they are for a first start. All of them should be well documented.

Configure at least the following variables in /etc/graylog/server/server.conf:

• is_master = true

– Set only one graylog-server node as the master. This node will perform periodical and mainte-
nance actions that slave nodes won’t. Every slave node will accept messages just as the master nodes.
Nodes will fall back to slave mode if there already is a master in the cluster.

• password_secret

– You must set a secret that is used for password encryption and salting here. The server will refuse to
start if it’s not set. Generate a secret with for example pwgen -N 1 -s 96. If you run multiple
graylog-server nodes, make sure you use the same password_secret for all of them!

• root_password_sha2

– A SHA2 hash of a password you will use for your initial login. Set this to a SHA2 hash generated
with echo -n yourpassword | shasum -a 256 and you will be able to log in to the web
interface with username admin and password yourpassword.

2.10. Manual Setup 23

https://www.elastic.co/downloads/elasticsearch
https://docs.mongodb.org/manual/administration/install-on-linux/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-debian/
https://www.graylog.org/download/

Graylog Documentation, Release 1.1.6

• elasticsearch_max_docs_per_index = 20000000

– How many log messages to keep per index. This setting multiplied with
elasticsearch_max_number_of_indices results in the maximum number of mes-
sages in your Graylog setup. It is always better to have several more smaller indices than just a few
larger ones.

• elasticsearch_max_number_of_indices = 20

– How many indices to have in total. If this number is reached, the oldest index will be deleted. Also
take a look at the other retention strategies that allow you to automatically delete messages
based on their age.

• elasticsearch_shards = 4

– The number of shards for your indices. A good setting here highly depends on the number of nodes
in your Elasticsearch cluster. If you have one node, set it to 1.

• elasticsearch_replicas = 0

– The number of replicas for your indices. A good setting here highly depends on the number of nodes
in your Elasticsearch cluster. If you have one node, set it to 0.

• mongodb_*

– Enter your MongoDB connection and authentication information here. Make sure that you con-
nect the web interface to the same database. You don’t need to configure mongodb_user and
mongodb_password if mongodb_useauth is set to false.

Starting the server

You need to have Java installed. Running the OpenJDK is totally fine and should be available on all platforms. For
example on Debian it is:

~$ apt-get install openjdk-7-jre

You need at least Java 7 as Java 6 has reached EOL.

Start the server:

~$ cd bin/
~$./graylogctl start

The server will try to write a node_id to the graylog-server-node-id file. It won’t start if it can’t write there
because of for example missing permissions.

See the startup parameters description below to learn more about available startup parameters. Note that you might
have to be root to bind to the popular port 514 for syslog inputs.

You should see a line like this in the debug output of graylog-server successfully connected to your Elasticsearch
cluster:

2013-10-01 12:13:22,382 DEBUG: org.elasticsearch.transport.netty - [graylog-server]
→˓connected to node [[Unuscione, Angelo][thN_gIBkQDm2ab7k-2Zaaw][inet[/10.37.160.
→˓227:9300]]]

You can find the graylog-server logs in the directory logs/.

Important: All graylog-server instances must have synchronised time. We strongly recommend to use NTP or
similar mechanisms on all machines of your Graylog infrastructure.

24 Chapter 2. Installing Graylog

http://en.wikipedia.org/wiki/Network_Time_Protocol

Graylog Documentation, Release 1.1.6

Supplying external logging configuration

The graylog-server uses Log4j for its internal logging and ships with a default log configuration file which is
embedded within the shipped JAR.

In case you need to overwrite the configuration graylog-server uses, you can supply a Java system property
specifying the path to the configuration file in your graylogctl script. Append this before the -jar paramter:

-Dlog4j.configuration=file:///tmp/logj4.xml

Substitute the actual path to the file for the /tmp/log4j.xml in the example.

In case you do not have a log rotation system already in place, you can also configure Graylog to rotate logs based on
their size to prevent its logs to grow without bounds.

One such example log4j.xml configuration is shown below. Graylog includes the log4j-extras companion
classes to support time based and size based log rotation. This is the example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration PUBLIC "-//APACHE//DTD LOG4J 1.2//EN" "log4j.dtd">
<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

<appender name="FILE" class="org.apache.log4j.rolling.RollingFileAppender">
<rollingPolicy class="org.apache.log4j.rolling.FixedWindowRollingPolicy" >

<param name="activeFileName" value="/tmp/server.log" /> <!-- ADAPT -->
<param name="fileNamePattern" value="/tmp/server.%i.log" /> <!-- ADAPT -->
<param name="minIndex" value="1" /> <!-- ADAPT -->
<param name="maxIndex" value="10" /> <!-- ADAPT -->

</rollingPolicy>
<triggeringPolicy class="org.apache.log4j.rolling.SizeBasedTriggeringPolicy">

<param name="maxFileSize" value="5767168" /> <!-- ADAPT: For example 5.
→˓5MB in bytes -->

</triggeringPolicy>
<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d %-5p: %c - %m%n"/>
</layout>

</appender>

<!-- Application Loggers -->
<logger name="org.graylog2">

<level value="info"/>
</logger>
<!-- this emits a harmless warning for ActiveDirectory every time which we can't

→˓work around :(-->
<logger name="org.apache.directory.api.ldap.model.message.BindRequestImpl">

<level value="error"/>
</logger>
<!-- Root Logger -->
<root>

<priority value="info"/>
<appender-ref ref="FILE"/>

</root>

</log4j:configuration>

Command line (CLI) parameters

There are a number of CLI parameters you can pass to the call in your graylogctl script:

2.10. Manual Setup 25

https://github.com/Graylog2/graylog2-server/blob/1.1.5/graylog2-bootstrap/src/main/resources/log4j.xml

Graylog Documentation, Release 1.1.6

• -h, --help: Show help message

• -f CONFIGFILE, --configfile CONFIGFILE: Use configuration file CONFIGFILE for Graylog; de-
fault: /etc/graylog/server/server.conf

• -t, --configtest: Validate the Graylog configuration and exit with exit code 0 if the configuration file is
syntactically correct, exit code 1 and a description of the error otherwise

• -d, --debug: Run in debug mode

• -l, --local: Run in local mode. Automatically invoked if in debug mode. Will not send system statistics,
even if enabled and allowed. Only interesting for development and testing purposes.

• -r, --no-retention: Do not automatically delete old/outdated indices

• -p PIDFILE, --pidfile PIDFILE: Set the file containing the PID of graylog to PIDFILE; default:
/tmp/graylog.pid

• -np, --no-pid-file: Do not write PID file (overrides -p/–pidfile)

• --version: Show version of Graylog and exit

Problems with IPv6 vs. IPv4?

If your graylog-server instance refuses to listen on IPv4 addresses and always chooses for example a
rest_listen_address like :::12900 you can tell the JVM to prefer the IPv4 stack.

Add the java.net.preferIPv4Stack flag in your graylogctl script or from wherever you are calling the graylog.jar:

~$ sudo -u graylog java -Djava.net.preferIPv4Stack=true -jar graylog.jar

Manual setup: graylog-web-interface on Linux

Prerequisites

The only thing you need is at least one compatible graylog-server node. Please use the same version number to
make sure that it is compatible.

You also must use Java 7! Java 6 is not compatible with Graylog and will also not receive any more publicly available
bug and security fixes by Oracle.

Downloading and extracting the web-interface

Download the package from the download pages.

Extract the archive:

~$ tar xvfz graylog-web-interface-VERSION.tgz
~$ cd graylog-web-interface-VERSION

Configuring the web interface

Open conf/graylog-web-interface.conf and set the two following variables:

26 Chapter 2. Installing Graylog

https://www.graylog.org/download/

Graylog Documentation, Release 1.1.6

• graylog2-server.uris="http://127.0.0.1:12900/": This is the list of graylog-server
nodes the web interface will try to use. You can configure one or multiple, separated by commas. Use the
rest_listen_uri (configured in graylog.conf) of your graylog-server instances here.

• application.secret="": A secret for encryption. Use a long, randomly generated string here. (for
example generated using pwgen -N 1 -s 96)

Starting the web interface

You need to have Java installed. Running the OpenJDK is totally fine and should be available on all platforms. For
example on Debian it is:

~$ apt-get install openjdk-7-jre

You need at least Java 7 as Java 6 has reached EOL.

Now start the web interface:

~$ bin/graylog-web-interface
Play server process ID is 5723
[info] play - Application started (Prod)
[info] play - Listening for HTTP on /0:0:0:0:0:0:0:0:9000

The web interface will listen on port 9000. You should see a login screen right away after pointing your browser to it.
Log in with username admin and the password you configured at root_password_sha2 in the graylog.conf
of your graylog-server.

Changing the listen port and address works like this:

~$ bin/graylog-web-interface -Dhttp.port=1234 -Dhttp.address=127.0.0.1

Java generally prefers to bind to an IPv6 address if that is supported by your system, while you might want to prefer
IPv4. To change Java’s default preference you can pass -Djava.net.preferIPv4Stack=true to the startup
script:

~$ bin/graylog-web-interface -Djava.net.preferIPv4Stack=true

All those -D settings can also be added to the JAVA_OPTS environment variable which is being read by the startup
script, too.

You can start the web interface in background for example like this:

~$ nohup bin/graylog-web-interface &

Custom configuration file path

You can put the configuration file into another directory like this:

~$ bin/graylog-web-interface -Dconfig.file=/etc/graylog-web-interface.conf

Create a message input and send a first message

Log in to the web interface and navigate to System -> Nodes. Select your graylog-server node there and click
on Manage inputs.

2.10. Manual Setup 27

Graylog Documentation, Release 1.1.6

Launch a new Raw/Plaintext UDP input, listening on port 9099 and listening on 127.0.0.1. No need to configure
anything else for now. The list of running inputs on that node should show you your new input right away. Let’s send
a message in:

echo "Hello Graylog, let's be friends." | nc -w 1 -u 127.0.0.1 9099

This has sent a short string to the raw UDP input you just opened. Now search for friends using the searchbar on the
top and you should already see the message you just sent in. Click on it in the table and see it in detail:

You have just sent your first message to Graylog! Why not spawn a syslog input and point some of your servers to it?
You could also create some user accounts for your colleagues.

HTTPS

Enabling HTTPS is easy. Just start the web interface like this:

bin/graylog-web-interface -Dhttps.port=443

This will generate self-signed certificate. To use proper certificates you must configure a Java key store. Most signing
authorities provide instructions on how to create a Java keystore and the official keystore utility docs can be found
here.

• https.keyStore The path to the keystore containing the private key and certificate, if not provided generates
a keystore for you

• https.keyStoreType The key store type, defaults to JKS

• https.keyStorePassword The password, defaults to a blank password

• https.keyStoreAlgorithm The key store algorithm, defaults to the platforms default algorithm

To disable HTTP without SSL completely and enforce HTTPS, use this parameter:

28 Chapter 2. Installing Graylog

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html

Graylog Documentation, Release 1.1.6

-Dhttp.port=disabled

Configuring logging

The default setting of the web interface is to write its own logs to STDOUT. You can take control of the logging by
specifying an own Logback configuration file to use:

bin/graylog-web-interface -Dlogger.file=/etc/graylog-web-interface-log.xml

This is an example Logback configuration file that has a disabled STDOUT appender and an enabled appender that
writes to a file (/var/log/graylog/web/graylog-web-interface.log), keeps 30 days of logs in total
and creates a new log file if a file should have reached a size of 100MB:

<configuration>

<!--
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">

<encoder>
<pattern>%date %-5level [%thread] - [%logger]- %msg%n</pattern>

</encoder>
</appender>
-->

<appender name="ROLLING_FILE" class="ch.qos.logback.core.rolling.
→˓RollingFileAppender">

<file>/var/log/graylog/web/graylog-web-interface.log</file>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">

<FileNamePattern>/var/log/graylog/web/graylog-web-interface.log.%d{yyyy-
→˓MM-dd}.%i.log.gz</FileNamePattern>

<MaxHistory>30</MaxHistory>
<timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.

→˓rolling.SizeAndTimeBasedFNATP">
<maxFileSize>100MB</maxFileSize>

</timeBasedFileNamingAndTriggeringPolicy>
</rollingPolicy>
<encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">

<pattern>%date [%thread] %-5level %logger{36} - %msg%n</pattern>
</encoder>

</appender>

<root level="INFO">
<!--<appender-ref ref="STDOUT" />-->
<appender-ref ref="ROLLING_FILE" />

</root>

</configuration>

2.10. Manual Setup 29

http://logback.qos.ch/

Graylog Documentation, Release 1.1.6

30 Chapter 2. Installing Graylog

CHAPTER 3

Configuring and tuning Elasticsearch

We strongly recommend to use a dedicated Elasticsearch cluster for your Graylog setup. If you are using a shared
Elasticsearch setup, a problem with indices unrelated to Graylog might turn the cluster status to yellow or red and
impact the availability and performance of your Graylog setup.

Configuration

Configuration of graylog-server nodes

The most important settings to make a successful connection are the Elasticsearch cluster name and the discovery
mode. Graylog is able to discover the Elasticsearch nodes using multicast. This is great for development and proof of
concepts but we recommend to use classic unicast discovery in production.

Cluster Name

You need to tell graylog-server which Elasticsearch cluster to join. The Elasticsearch cluster de-
fault name is elasticsearch and configured for every Elasticsearch node in its elasticsearch.yml con-
figuration file with the setting cluster.name. Configure the same name in every graylog.conf as
elasticsearch_cluster_name. We recommend to call the cluster graylog-production and not
elasticsearch.

The elasticsearch.yml file is typically located in /etc/elasticsearch/.

Discovery mode

The default discovery mode is multicast. Graylog will try to find other Elasticsearch nodes automatically. This usually
works fine when everything is running on the same system but gets problematic quickly when running in a bigger
network topology. We recommend to use unicast for production setups. Configure Zen unicast discovery in Graylog
with the following lines in your configuration file:

31

Graylog Documentation, Release 1.1.6

Disable multicast
elasticsearch_discovery_zen_ping_multicast_enabled = false
List of Elasticsearch nodes to connect to
elasticsearch_discovery_zen_ping_unicast_hosts = es-node-1.example.org:9300,es-node-2.
→˓example.org:9300

Also make sure to configure Zen unicast discovery in the Elasticsearch configuration file by adding the discovery.
zen.ping.multicast.enabled and discovery.zen.ping.unicast.hosts setting with the list of
Elasticsearch nodes to elasticsearch.yml:

discovery.zen.ping.multicast.enabled: false
discovery.zen.ping.unicast.hosts: ["es-node-1.example.org:9300" , "es-node-2.example.
→˓org:9300"]

The Elasticsearch default communication port is 9300/tcp (not to be confused with the HTTP interface running
on port 9200/tcp by default). The communication port can be changed in the Elasticsearch configuration file
(elasticsearch.yml) with the configuration setting transport.tcp.port. Make sure that Elasticsearch
binds to a network interface that Graylog can connect to (see network.host).

Configuration of Elasticsearch nodes

Disable dynamic scripting

Elasticsearch prior to version 1.2 had an insecure default configuration which could lead to a remote code execution.
(see here and here for details)

Make sure to add script.disable_dynamic: true to the elasticsearch.yml file to disable the dy-
namic scripting feature and prevent possible remote code executions.

Control access to Elasticsearch ports

Since Elasticsearch has no authentication mechanism at time of this writing, make sure to restrict access to the Elastic-
search ports (default: 9200/tcp and 9300/tcp). Otherwise the data is readable by anyone who has access to the machine
over network.

Open file limits

Because Elasticsearch has to keep a lot of files open simultaneously it requires a higher open file limit that the usual
operating system defaults allow. Set it to at least 64000 open file descriptors.

Graylog will show a notification in the web interface when there is a node in the Elasticsearch cluster which has a too
low open file limit.

Read about how to raise the open file limit in the corresponding Elasticsearch documentation page.

Heap size

It is strongly recommended to raise the standard size of heap memory allocated to Elasticsearch. Just set the
ES_HEAP_SIZE environment variable to for example 24g to allocate 24GB. We recommend to use around 50%
of the available system memory for Elasticsearch (when running on a dedicated host) to leave enough space for the
system caches that Elasticsearch uses a lot.

32 Chapter 3. Configuring and tuning Elasticsearch

http://www.elastic.co/guide/en/elasticsearch/reference/1.3/modules-discovery-zen.html#unicast
http://bouk.co/blog/elasticsearch-rce/
https://groups.google.com/forum/#!msg/graylog2/-icrS0rIA-Q/cCTJaNjVrQAJ
http://www.elasticsearch.org/tutorials/too-many-open-files/

Graylog Documentation, Release 1.1.6

Merge throttling

Elasticsearch is throttling the merging of Lucene segments to allow extremely fast searches. This throttling however
has default values that are very conservative and can lead to slow ingestion rates when used with Graylog. You would
see the message journal growing without a real indication of CPU or memory stress on the Elasticsearch nodes. It
usually goes along with Elasticsearch INFO log messages like this:

now throttling indexing

When running on fast IO like SSDs or a SAN we recommend to increase the value of the indices.store.
throttle.max_bytes_per_sec in your elasticsearch.yml to 150MB:

indices.store.throttle.max_bytes_per_sec: 150mb

Play around with this setting until you reach the best performance.

Tuning Elasticsearch

Graylog is already setting specific configuration per index it creates. This is enough tuning for a lot of use cases and
setups. A more detailed guide on deeper tuning of Elasticsearch is following.

Cluster Status explained

Elasticsearch provides a classification for the cluster health:

RED

The red status indicates that some or all of the primary shards are not available. In this state, no searches can be
performed until all primary shards are restored.

YELLOW

The yellow status means that all of the primary shards are available but some or all shard replicas are not.

With only one Elasticsearch node, the cluster state cannot become green because shard replicas cannot be assigned.
This can be solved by adding another Elasticsearch node to the cluster.

If the cluster is supposed to have only one node it is okay to be in the yellow state.

GREEN

The cluster is fully operational. All primary and replica shards are available.

3.2. Cluster Status explained 33

Graylog Documentation, Release 1.1.6

34 Chapter 3. Configuring and tuning Elasticsearch

CHAPTER 4

Sending in log data

A Graylog setup is pretty worthless without any data in it. This page explains the basic principles of getting your data
into the system and also explains common fallacies.

What are Graylog message inputs?

Message inputs are the Graylog parts responsible for accepting log messages. They are launched from the web inter-
face (or the REST API) in the System -> Inputs section and are launched and configured without the need to restart
any part of the system.

Content packs

Content packs are bundles of Graylog input, extractor, stream, dashboard, and output configurations that can provide
full support for a data source. Some content packs are shipped with Graylog by default and some are available from
the website. Content packs that were downloaded from here can be imported using the Graylog web interface.

You can load and even create own content packs from the System -> Content Packs section of your Graylog web
interface.

Syslog

Graylog is able to accept and parse RFC 5424 and RFC 3164 compliant syslog messages and supports TCP transport
with both the octet counting or termination character methods. UDP is also supported and the recommended way to
send log messages in most architectures.

Many devices, especially routers and firewalls, do not send RFC compliant syslog messages. This might result in
wrong or completely failing parsing. In that case you might have to go with a combination of raw/plaintext message
inputs that do not attempt to do any parsing and Extractors.

Rule of thumb is that messages forwarded by rsyslog or syslog-ng are usually parsed flawlessly.

35

https://www.graylog.org/resources/data-sources/
http://www.ietf.org/rfc/rfc5424.txt
http://www.ietf.org/rfc/rfc3164.txt

Graylog Documentation, Release 1.1.6

Sending syslog from Linux hosts

rsyslog

Forwarding syslog messages with rsyslog is easy. The only important thing to get the most out of your logs is following
RFC 5424. The following examples configures your rsyslog daemon to send RFC 5424 date to Graylog syslog
inputs:

UDP:

$template GRAYLOGRFC5424,"<%PRI%>%PROTOCOL-VERSION% %TIMESTAMP:::date-rfc3339%
→˓%HOSTNAME% %APP-NAME% %PROCID% %MSGID% %STRUCTURED-DATA% %msg%\n"

. @graylog.example.org:514;GRAYLOGRFC5424

TCP:

$template GRAYLOGRFC5424,"<%PRI%>%PROTOCOL-VERSION% %TIMESTAMP:::date-rfc3339%
→˓%HOSTNAME% %APP-NAME% %PROCID% %MSGID% %STRUCTURED-DATA% %msg%\n"

. @@graylog.example.org:514;GRAYLOGRFC5424

(The difference between UDP and TCP is using @ instead of @@ as target descriptor.)

Alternatively, the rsyslog built-in template RSYSLOG_SyslogProtocol23Format sends log messages in the same for-
mat as above. This exists in rsyslog versions of at least 5.10 or later.

The UDP examples above becomes:

. @graylog.example.org:514;RSYSLOG_SyslogProtocol23Format

syslog-ng

Configuring syslog-ng to send syslog to Graylog is equally simple. Use the syslog function to send RFC 5424
formatted syslog messages via TCP to the remote Graylog host:

Define TCP syslog destination.
destination d_net {

syslog("graylog.example.org" port(514));
};
Tell syslog-ng to send data from source s_src to the newly defined syslog
→˓destination.
log {

source(s_src); # Defined in the default syslog-ng configuration.
destination(d_net);

};

Sending syslog from MacOS X hosts

Sending log messages from MacOS X syslog daemons is easy. Just define a graylog-server instance as UDP log
target by adding this line in your /etc/syslog.conf:

. @graylog.example.org:514

Now restart syslogd:

36 Chapter 4. Sending in log data

http://www.ietf.org/rfc/rfc5424.txt
http://www.rsyslog.com/doc/v5-stable/configuration/templates.html#string-based-templates
http://www.ietf.org/rfc/rfc5424.txt

Graylog Documentation, Release 1.1.6

$ sudo launchctl unload /System/Library/LaunchDaemons/com.apple.syslogd.plist
$ sudo launchctl load /System/Library/LaunchDaemons/com.apple.syslogd.plist

Important: If syslogdwas running as another user you might end up with multiple syslogd instances and strange
behaviour of the whole system. Please check that only one syslogd process is running:

$ ps aux | grep syslog
lennart 58775 0.0 0.0 2432768 592 s004 S+ 6:10PM 0:00.00 grep
→˓syslog
root 58759 0.0 0.0 2478772 1020 ?? Ss 6:09PM 0:00.01 /usr/
→˓sbin/syslogd

That’s it! Your MacOS X syslog messages should now appear in your Graylog system.

GELF / Sending from applications

The Graylog Extended Log Format (GELF) is a log format that avoids the shortcomings of classic plain syslog and is
perfect to logging from your application layer. It comes with optional compression, chunking and most importantly
a clearly defined structure. There are dozens of GELF libraries for many frameworks and programming languages to
get you started.

Read more about GELF on graylog.org.

GELF via HTTP

You can send in all GELF types via HTTP, including uncompressed GELF that is just a plain JSON string.

After launching a GELF HTTP input you can use the following endpoints to send messages:

http://graylog.example.org:[port]/gelf (POST)

Try sending an example message using curl:

curl -XPOST http://graylog.example.org:12202/gelf -p0 -d '{"short_message":"Hello
→˓there", "host":"example.org", "facility":"test", "_foo":"bar"}'

Both keep-alive and compression are supported via the common HTTP headers. The server will return a 202
Accepted when the message was accepted for processing.

Microsoft Windows

Our recommended way to forward Windows log data (for example EventLog) to Graylog is to use our own log
collector. It comes with native support for reading Windows event logs.

Heroku

Heroku allows you to forward the logs of your application to a custom syslog server by creating a so called Syslog
drain. The drain sends all logs to the configured server(s) via TCP. Following example shows you how to configure
Graylog to receive the Heroku logs and extract the different fields into a structured log message.

4.4. GELF / Sending from applications 37

https://www.graylog.org/resources/data-sources/
https://www.graylog.org/resources/gelf-2/
https://devcenter.heroku.com/articles/logging#syslog-drains
https://devcenter.heroku.com/articles/logging#syslog-drains

Graylog Documentation, Release 1.1.6

Creating a Graylog input for Heroku log messages

Create a new RAW/Plaintext TCP input as shown below.

38 Chapter 4. Sending in log data

Graylog Documentation, Release 1.1.6

The Graylog Extractor library contains a set of extractors to parse the Heroku log format. You can import that set into
the newly created input so all parts of the log messages will be extracted into separate fields:

Open the extractor management for the input.

Go to the extractor import.

Paste the extractor JSON string into the form and submit.

That is all that is needed on the Graylog side. Make sure your firewall setup allows incoming connections on the inputs
port!

4.6. Heroku 39

https://www.graylog.org/resources/data-sources/
https://www.graylog.org/resource/extractor/53795f36e4b0b8f13c3d2ce5/

Graylog Documentation, Release 1.1.6

Configuring Heroku to send data to your Graylog setup

Heroku has a detailed documentation regarding the Syslog drains feature. The following example shows everything
that is needed to setup the drain for you application:

$ cd path/to/your/heroku/app
$ heroku drains
No drains for this app
$ heroku drains:add syslog://graylog.example.com:5556
Successfully added drain syslog://graylog.example.com:5556
$ heroku drains
syslog://graylog.example.com:5556 (d.8cf52d32-7d79-4653-baad-8cb72bb23ee1)

The Heroku CLI tool needs to be installed for this to work.

You Heroku application logs should now show up in the search results of your Graylog instance.

Ruby on Rails

This is easy: You just need to combine a few components.

Log all requests and logger calls into Graylog

The recommended way to send structured information (i.e. HTTP return code, action, controller, ... in additional fields)
about every request and explicit Rails.logger calls is easily accomplished using the GELF gem and lograge.
Lograge builds one combined log entry for every request (instead of several lines like the standard Rails logger) and
has a Graylog output since version 0.2.0.

Start by adding Lograge and the GELF gem to your Gemfile:

40 Chapter 4. Sending in log data

https://devcenter.heroku.com/articles/logging#syslog-drains
https://devcenter.heroku.com/articles/heroku-command
https://rubygems.org/gems/gelf
https://github.com/roidrage/lograge

Graylog Documentation, Release 1.1.6

gem "gelf"
gem "lograge"

Now configure both in your Rails application. Usually config/environments/production.rb is a good
place for that:

config.lograge.enabled = true
config.lograge.formatter = Lograge::Formatters::Graylog2.new
config.logger = GELF::Logger.new("graylog.example.org", 12201, "WAN", { :host =>
→˓"hostname-of-this-app", :facility => "heroku" })

This configuration will also send all explicit Rails.logger calls (e.g. Rails.logger.error "Something
went wrong") to Graylog.

Log only explicit logger calls into Graylog

If you don’t want to log information about every request, but only explicit Rails.logger calls, it is enough to only
configure the Rails logger.

Add the GELF gem to your Gemfile:

gem "gelf"

...and configure it in your Rails application. Usually config/environments/production.rb is a good place
for that:

config.logger = GELF::Logger.new("graylog.example.org", 12201, "WAN", { :host =>
→˓"hostname-of-this-app", :facility => "heroku" })

Heroku

You need to apply a workaround if you want custom logging on Heroku. The reason for this is that Heroku injects an
own logger (rails_log_stdout), that overwrites your custom one. The workaround is to add a file that makes
Heroku think that the logger is already in your application:

$ touch vendor/plugins/rails_log_stdout/heroku_fix

Raw/Plaintext inputs

The built-in raw/plaintext inputs allow you to parse any text that you can send via TCP or UDP. No parsing is applied
at all by default until you build your own parser using custom Extractors. This is a good way to support any text-based
logging format.

You can also write Plugins if you need extreme flexibility.

JSON path from HTTP API input

The JSON path from HTTP API input is reading any JSON response of a REST resource and stores a field value of it
as a Graylog message.

4.8. Raw/Plaintext inputs 41

Graylog Documentation, Release 1.1.6

Example

Let’s try to read the download count of a release package stored on GitHub for analysis in Graylog. The call looks like
this:

$ curl -XGET https://api.github.com/repos/YourAccount/YourRepo/releases/assets/12345
{

"url": "https://api.github.com/repos/YourAccount/YourRepo/releases/assets/12345",
"id": 12345,
"name": "somerelease.tgz",
"label": "somerelease.tgz",
"content_type": "application/octet-stream",
"state": "uploaded",
"size": 38179285,
"download_count": 9937,
"created_at": "2013-09-30T20:05:01Z",
"updated_at": "2013-09-30T20:05:46Z"

}

The attribute we want to extract is download_count so we set the JSON path to $.download_count.

This will result in a message in Graylog looking like this:

You can use Graylog to analyse your download counts now.

JSONPath

JSONPath can do much more than just selecting a simple known field value. You can for example do this to select the
first download_count from a list of releases where the field state has the value uploaded:

$.releases[?(@.state == 'uploaded')][0].download_count

...or only the first download count at all:

$.releases[0].download_count

You can learn more about JSONPath here.

Reading from files

Graylog is currently not providing an out-of-the-box way to read log messages from files. We do however recommend
two fantastic tools to do that job for you. Both come with native Graylog (GELF) outputs:

42 Chapter 4. Sending in log data

http://goessner.net/articles/JsonPath/

Graylog Documentation, Release 1.1.6

• fluentd

• logstash

4.10. Reading from files 43

http://www.fluentd.org/guides/recipes/graylog2
http://logstash.net/docs/1.4.2/outputs/gelf

Graylog Documentation, Release 1.1.6

44 Chapter 4. Sending in log data

CHAPTER 5

Graylog Collector

Graylog Collector is a lightweight Java application that allows you to forward data from log files to a Graylog cluster.
The collector can read local log files and also Windows Events natively, it then can forward the log messages over the
network using the GELF format.

Installation

Linux/Unix

You need to have Java >= 7 installed to run the collector.

Operating System Packages

We offer official package repositories for the following operating systems.

• Ubuntu 12.04, 14.04

• Debian 8

• CentOS 7

Please open an issue in the Github repository if you run into any packaging related issues. Thank you!

Ubuntu 14.04

Download and install graylog-collector-latest-repository-ubuntu14.04_latest.deb via dpkg(1) and also make sure
that the apt-transport-https package is installed:

$ wget https://packages.graylog2.org/repo/packages/graylog-collector-latest-
→˓repository-ubuntu14.04_latest.deb
$ sudo dpkg -i graylog-collector-latest-repository-ubuntu14.04_latest.deb
$ sudo apt-get install apt-transport-https
$ sudo apt-get update
$ sudo apt-get install graylog-collector

45

https://www.graylog.org/resources/gelf-2/
https://github.com/Graylog2/fpm-recipes/issues
https://github.com/Graylog2/fpm-recipes
https://packages.graylog2.org/repo/packages/graylog-collector-latest-repository-ubuntu14.04_latest.deb

Graylog Documentation, Release 1.1.6

Ubuntu 12.04

Download and install graylog-collector-latest-repository-ubuntu12.04_latest.deb via dpkg(1) and also make sure
that the apt-transport-https package is installed:

$ wget https://packages.graylog2.org/repo/packages/graylog-collector-latest-
→˓repository-ubuntu12.04_latest.deb
$ sudo dpkg -i graylog-collector-latest-repository-ubuntu12.04_latest.deb
$ sudo apt-get install apt-transport-https
$ sudo apt-get update
$ sudo apt-get install graylog-collector

Debian 8

Download and install graylog-collector-latest-repository-debian8_latest.deb via dpkg(1) and also make sure that the
apt-transport-https package is installed:

$ wget https://packages.graylog2.org/repo/packages/graylog-collector-latest-
→˓repository-debian8_latest.deb
$ sudo dpkg -i graylog-collector-latest-repository-debian8_latest.deb
$ sudo apt-get install apt-transport-https
$ sudo apt-get update
$ sudo apt-get install graylog-collector

CentOS 7

Download and install graylog-collector-latest-repository-el7_latest.rpm via rpm(8):

$ sudo rpm -Uvh https://packages.graylog2.org/repo/packages/graylog-collector-latest-
→˓repository-el7_latest.rpm
$ sudo yum install graylog-collector

Manual Setup

1. Download the latest collector release. (find download links in the collector repository README)

2. Unzip collector tgz file to target location

3. cp config/collector.conf.example to config/collector.conf

4. Update server-url in collector.conf to correct Graylog server address (required for registration)

5. Update file input configuration with the correct log files

6. Update outputs->gelf-tcp with the correct Graylog server address (required for sending GELF messages)

Note: The collector will not start properly if you do not set the URL or the correct input log files and GELF output
configuration

Windows

You need to have Java >= 7 installed to run the collector.

Download a release zip file from the collector repository README. Unzip the collector zip file to target location.

46 Chapter 5. Graylog Collector

https://packages.graylog2.org/repo/packages/graylog-collector-latest-repository-ubuntu12.04_latest.deb
https://packages.graylog2.org/repo/packages/graylog-collector-latest-repository-debian8_latest.deb
https://packages.graylog2.org/repo/packages/graylog-collector-latest-repository-el7_latest.rpm
https://github.com/Graylog2/collector#binary-download
https://github.com/Graylog2/collector#binary-download

Graylog Documentation, Release 1.1.6

Change into the extracted collector directory and create a collector configuration file in config\collector.
conf.

5.1. Installation 47

Graylog Documentation, Release 1.1.6

The following configuration file shows a good starting point for Windows systems. It collects the Application, Security,
and System event logs. Replace the <your-graylog-server-ip> with the IP address of your Graylog server.

Example:

server-url = "http://<your-graylog-server-ip>:12900/"

inputs {
win-eventlog-application {
type = "windows-eventlog"
source-name = "Application"
poll-interval = "1s"

}
win-eventlog-system {
type = "windows-eventlog"
source-name = "System"
poll-interval = "1s"

}
win-eventlog-security {
type = "windows-eventlog"
source-name = "Security"
poll-interval = "1s"

}
}

outputs {
gelf-tcp {
type = "gelf"
host = "<your-graylog-server-ip>"
port = 12201

}
}

Start a cmd.exe, change to the collector installation path and execute the following commands to install the collector
as Windows service.

Commands:

48 Chapter 5. Graylog Collector

Graylog Documentation, Release 1.1.6

C:\> cd graylog-collector-0.2.2
C:\graylog-collector-0.2.2> bin\graylog-collector-service.bat install GraylogCollector
C:\graylog-collector-0.2.2> bin\graylog-collector-service.bat start GraylogCollector

Configuration

You will need a configuration file before starting the collector. The configuration file is written in the HOCON format
which is a human-optimized version of JSON.

If you choose the operating system installation method, the configuration file defaults to /etc/graylog/
collector/collector.conf. For the manual installation method you have to pass the path to the configuration
to the start script. (see Running Graylog Collector)

Here is a minimal configuration example that collects logs from the /var/log/syslog file and sends them to a
Graylog server:

server-url = "http://10.0.0.1:12900/"

inputs {
syslog {
type = "file"
path = "/var/log/syslog"

}
}

outputs {
graylog-server {
type = "gelf"
host = "10.0.0.1"
port = 12201

}
}

5.2. Configuration 49

https://github.com/typesafehub/config/blob/master/HOCON.md

Graylog Documentation, Release 1.1.6

There are a few global settings available as well as several sections which configure different subsystems of the
collector.

Global Settings

server-url - The API URL of the Graylog server Used to send a heartbeat to the Graylog server.

(default: "http://localhost:12900")

enable-registration - Enable heartbeat registration Enables the heartbeat registration with the Graylog
server. The collector will not contact the Graylog server API for heartbeat registration if this is set to false.

(default: true)

collector-id - Unique collector ID setting The ID used to identify this collector. Can be either a string which
is used as ID, or the location of a file if prefixed with file:. If the file does not exist, an ID will be generated
and written to that file. If it exists, it is expected to contain a single string without spaces which will be used for
the ID.

(default: "file:config/collector-id")

Input Settings

The input settings need to be nested in a input { } block. Each input has an ID and a type:

inputs {
syslog { // => The input ID
type = "file" // => The input type
...

}
}

An input ID needs to be unique among all configured inputs. If there are two inputs with the same ID, the last one
wins.

The following input types are available.

File Input

The file input follows files in the file system and reads log data from them.

type This needs to be set to "file".

path The path to a file that should be followed.

Please make sure to escape the \ character in Windows paths: path = "C:\\Program
Files\\Apache2\\logs\\www.example.com.access.log"

(default: none)

path-glob-root The globbing root directory that should be monitored. See below for an explanation on globbing.

Please make sure to escape the \ character in Windows paths: path = "C:\\Program
Files\\Apache2\\logs\\www.example.com.access.log"

(default: none)

path-glob-pattern The globbing patttern. See below for an explanation on globbing.

(default: none)

50 Chapter 5. Graylog Collector

Graylog Documentation, Release 1.1.6

content-splitter The content splitter implementation that should be used to detect the end of a log message.

Available content splitters: NEWLINE, PATTERN

See below for an explanation on content splitters.

(default: "NEWLINE")

content-splitter-pattern The pattern that should be used for the PATTERN content splitter.

(default: none)

charset Charset of the content in the configured file(s).

Can be one of the Supported Charsets of the JVM.

(default: "UTF-8")

reader-interval The interval in which the collector tries to read from every configured file. You might set this
to a higher value like 1s if you have files which do not change very often to avoid unnecessary work.

(default: "100ms")

Globbing / Wildcards

You might want to configure the collector to read from lots of different files or files which have a different name
each time they are rotated. (i.e. time/date in a filename) The file input supports this via the path-glob-root and
path-glob-pattern settings.

A usual glob/wildcard string you know from other tools might be /var/log/apache2/**/*.{access,
error}.log. This means you are interested in all log files which names end with .access.log or .error.log
and which are in a sub directory of /var/log/apache2. Example: /var/log/apache2/example.com/
www.example.com.access.log

For compatibility reasons you have to split this string into two parts. The root and the pattern.

Examples:

// /var/log/apache2/**/*.{access,error}.log
path-glob-root = "/var/log/apache2"
path-glob-pattern = "**/*.{access,error}.log"

// C:\Program Files\Apache2\logs*.access.log
path-glob-root = "C:\\Program Files\\Apache2\\logs" // Make sure to escape the \
→˓character in Windows paths!
path-glob-pattern = "*.access.log"

The file input will monitor the path-glob-root for new files and checks them against the path-glob-pattern
to decide if they should be followed or not.

All available special characters for the glob pattern are documented in the Java docs for the getPathMatcher() method.

Content Splitter

One common problem when reading from plain text log files is to decide when a log message is complete. By default,
the file input considers each line in a file to be a separate log message:

Jul 15 10:27:08 tumbler anacron[32426]: Job `cron.daily' terminated # <-- Log
→˓message 1
Jul 15 10:27:08 tumbler anacron[32426]: Normal exit (1 job run) # <-- Log
→˓message 2

But there are several cases where this is not correct. Java stack traces are a good example:

5.2. Configuration 51

https://docs.oracle.com/javase/8/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/api/java/nio/file/FileSystem.html#getPathMatcher(java.lang.String)

Graylog Documentation, Release 1.1.6

2015-07-10T11:16:34.486+01:00 WARN [InputBufferImpl] Unable to process event
→˓RawMessageEvent{raw=null, uuid=bde580a0-26ec-11e5-9a46-005056b26ca9,
→˓encodedLength=350}, sequence 19847516
java.lang.NullPointerException

at org.graylog2.shared.buffers.JournallingMessageHandler$Converter.
→˓apply(JournallingMessageHandler.java:89)

at org.graylog2.shared.buffers.JournallingMessageHandler$Converter.
→˓apply(JournallingMessageHandler.java:72)

at com.google.common.collect.Lists$TransformingRandomAccessList$1.
→˓transform(Lists.java:617)

at com.google.common.collect.TransformedIterator.next(TransformedIterator.
→˓java:48)

at java.util.AbstractCollection.toArray(AbstractCollection.java:141)
at java.util.ArrayList.<init>(ArrayList.java:177)
at com.google.common.collect.Lists.newArrayList(Lists.java:144)
at org.graylog2.shared.buffers.JournallingMessageHandler.

→˓onEvent(JournallingMessageHandler.java:61)
at org.graylog2.shared.buffers.JournallingMessageHandler.

→˓onEvent(JournallingMessageHandler.java:36)
at com.lmax.disruptor.BatchEventProcessor.run(BatchEventProcessor.java:128)
at com.codahale.metrics.InstrumentedExecutorService$InstrumentedRunnable.

→˓run(InstrumentedExecutorService.java:176)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.

→˓java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.

→˓java:617)
at java.lang.Thread.run(Thread.java:745)

2015-07-10T11:18:18.000+01:00 WARN [InputBufferImpl] Unable to process event
→˓RawMessageEvent{raw=null, uuid=bde580a0-26ec-11e5-9a46-005056b26ca9,
→˓encodedLength=350}, sequence 19847516
java.lang.NullPointerException

...

...

This should be one message but using a newline separator here will not work because it would generate one log
message for each line.

To solve this problem, the file input can be configured to use a PATTERN content splitter. It creates separate log
messages based on a regular expression instead of newline characters. A configuration for the stack trace example
above could look like this:

inputs {
graylog-server-logs {
type = "file"
path = "/var/log/graylog-server/server.log"
content-splitter = "PATTERN"
content-splitter-pattern = "^\\d{4}-\\d{2}-\\d{2}T" // Make sure to escape the \

→˓character!
}

}

This instructs the file input to split messages on a timestamp at the beginning of a line. So the first stack trace in the
message above will be considered complete once a new timestamp is detected.

Windows Eventlog Input

The Windows eventlog input can read event logs from Windows systems.

52 Chapter 5. Graylog Collector

Graylog Documentation, Release 1.1.6

type This needs to be set to "windows-eventlog".

source-name The Windows event log system has several different sources from which events can be read.

Common source names: Application, System, Security

(default: "Application")

poll-interval This controls how often the Windows event log should be polled for new events.

(default: "1s")

Example:

inputs {
win-eventlog-application {
type = "windows-eventlog"
source-name = "Application"
poll-interval = "1s"

}
}

Output Settings

The output settings need to be nested in a output { } block. Each output has an ID and a type:

outputs {
graylog-server { // => The output ID
type = "gelf" // => The output type
...

}
}

An output ID needs to be unique among all configured outputs. If there are two outputs with the same ID, the last one
wins.

The following output types are available.

GELF Output

The GELF output sends log messages to a GELF TCP input on a Graylog server.

type This needs to be set to "gelf".

host Hostname or IP address of the Graylog server.

(default: none)

port Port of the GELF TCP input on the Graylog server host.

(default: none)

client-tls Enables TLS for the connection to the GELF TCP input. Requires a TLS-enabled GELF TCP input
on the Graylog server. (default: false)

client-tls-cert-chain-file Path to a TLS certificate chain file. If not set, the default certificate chain of
the JVM will be used.

(default: none)

5.2. Configuration 53

Graylog Documentation, Release 1.1.6

client-tls-verify-cert Verify the TLS certificate of the GELF TCP input on the Graylog server.

You might have to disable this if you are using a self-signed certificate for the GELF input and do not have any
certificate chain file.

(default: true)

client-queue-size The GELF client library that is used for this output has an internal queue of messages. This
option configures the size of this queue.

(default: 512)

client-connect-timeout TCP connection timeout to the GELF input on the Graylog server.

(default: 5000)

client-reconnect-delay The delay before the output tries to reconnect to the GELF input on the Graylog
server.

(default: 1000)

client-tcp-no-delay Sets the TCP_NODELAY option on the TCP socket that connects to the GELF input.

(default: true)

client-send-buffer-size Sets the TCP send buffer size for the connection to the GELF input.

It uses the JVM default for the operating system if set to -1.

(default: -1)

STDOUT Output

The STDOUT output prints the string representation of each message to STDOUT. This can be useful for debugging
purposes but should be disabled in production.

type This needs to be set to "stdout".

Static Message Fields

Sometimes it is useful to be able to add some static field to a message. This can help selecting extractors to run on the
server, simplify stream routing and can make searching/filtering for those messages easier.

Every collector input can be configured with a message-fields option which takes key-value pairs. The key needs
to be a string, the value can be a string or a number.

Example:

inputs {
apache-logs {
type = "file"
path = "/var/log/apache2/access.log"
message-fields = {

"program" = "apache2"
"priority" = 3

}
}

}

54 Chapter 5. Graylog Collector

https://github.com/Graylog2/gelfclient

Graylog Documentation, Release 1.1.6

Each static message field will end up in the GELF message and shows up in the web interface as a separate field.

An input might overwrite a message field defined in the input configuration. For example the file input always
sets a source_file field with the path to the file where the message has been read from. If you configure a
source_file message field, it will be overwritten by the input.

Input/Output Routing

Every message that gets read by the configured inputs will be routed to every configured output. If you have two file
inputs and two GELF outputs, every message will be received by both outputs. You might want to send some logs to
only one output or have one output only accept logs from a certain input, though.

The collector provides two options for inputs and outputs which can be used to influence the message routing.

Inputs have a outputs option and outputs have a inputs option. Both take a comma separated list of input/output
IDs.

Example:

inputs {
apache-logs {
type = "file"
path-glob-root = "/var/log/apache2"
path-glob-pattern = "*.{access,error}.log"
outputs = "gelf-1,gelf-2"

}
auth-log {
type = "file"
path = "/var/log/auth.log"

}
syslog {
type = "file"
path = "/var/log/syslog"

}
}

outputs {
gelf-1 {
type = "gelf"
host = "10.0.0.1"
port = 12201

}
gelf-2 {
type = "gelf"
host = "10.0.0.1"
port = 12202

}
console {
type = "stdout"
inputs = "syslog"

}
}

Routing for this config:

• apache-logs messages will only go to gelf-1 and gelf-2 outputs.

• auth-log messages will go to gelf-1 and gelf-2 outputs.

• syslog messages will go to all outputs.

5.2. Configuration 55

Graylog Documentation, Release 1.1.6

• console output will only receive messages from syslog input.

inputs | outputs gelf-1 gelf-2 console
apache-logs
auth-log
syslog

This is pretty powerful but might get confusing when inputs and outputs have the routing fields. This is how it is
implemented in pseudo-code:

var message = Object(message)
var output = Object(gelf-output)

if empty(output.inputs) AND empty(message.outputs)

// No output routing configured, write the message to the output.
output.write(message)

else if output.inputs.contains(message.inputId) OR message.outputs.contains(output.id)

// Either the input that generated the message has the output ID in its "outputs"
→˓field
// or the output has the ID of the input that generated the message in its "inputs"

→˓field.
output.write(message)

end

Running Graylog Collector

You will need a configuration file before starting the collector. See the configuration documentation above for detailed
instructions on how to configure it.

Linux/Unix

The start method for the collector depends on the installation method your choose.

Operating System Package

We ship startup scripts in our OS packages that use the startup method of the particular operating system.

OS Init System Example
Ubuntu upstart sudo start graylog-collector
Debian systemd sudo systemctl start graylog-collector
CentOS systemd sudo systemctl start graylog-collector

Manual Setup

If you use the manual setup, the location of the start script depends on where you extracted the collector.

Example:

$ bin/graylog-collector run -f config/collector.conf

56 Chapter 5. Graylog Collector

Graylog Documentation, Release 1.1.6

Windows

You probably want to run the collector as Windows service as described in the Windows installation section above. If
you want to run it from the command line, run the following commands.

Make sure you have a valid configuration file in config\collector.conf.

Commands:

C:\> cd graylog-collector-0.2.2
C:\graylog-collector-0.2.2> bin\graylog-collector.bat run -f config\collector.conf

Collector Status

Once the collector has been deployed successfully, you can check on the status from the Graylog UI.

5.3. Running Graylog Collector 57

Graylog Documentation, Release 1.1.6

You can reach the collector status overview page this way:

1. Log into Graylog Web Interface

2. Navigate to System / Collectors

3. Click Collectors

Troubleshooting

Check the standard output of the collector process for any error messages or warnings. Messages not arriving in your
Graylog cluster? Check possible firewalls and the network connection.

Command Line Options

Linux/Unix

The collector offers the following command line options:

usage: graylog-collector <command> [<args>]

The most commonly used graylog-collector commands are:

help Display help information

run Start the collector

version Show version information on STDOUT

58 Chapter 5. Graylog Collector

Graylog Documentation, Release 1.1.6

See 'graylog-collector help <command>' for more information on a specific command.

NAME
graylog-collector run - Start the collector

SYNOPSIS
graylog-collector run -f <configFile>

OPTIONS
-f <configFile>

Path to configuration file.

Correctly Configured Collector Log Sample

This is the STDOUT output of a healthy collector starting:

2015-05-12T16:00:10.841+0200 INFO [main] o.graylog.collector.cli.commands.Run -
→˓Starting Collector v0.2.0-SNAPSHOT (commit a2ad8c8)
2015-05-12T16:00:11.489+0200 INFO [main] o.g.collector.utils.CollectorId - Collector
→˓ID: cf4734f7-01d6-4974-a957-cb71bbd826b7
2015-05-12T16:00:11.505+0200 INFO [GelfOutput] o.g.c.outputs.gelf.GelfOutput -
→˓Starting GELF transport: org.graylog2.gelfclient.GelfConfiguration@3952e37e
2015-05-12T16:00:11.512+0200 INFO [main] o.graylog.collector.cli.commands.Run -
→˓Service RUNNING: BufferProcessor [RUNNING]
2015-05-12T16:00:11.513+0200 INFO [main] o.graylog.collector.cli.commands.Run -
→˓Service RUNNING: MetricService [RUNNING]
2015-05-12T16:00:11.515+0200 INFO [main] o.graylog.collector.cli.commands.Run -
→˓Service RUNNING: FileInput{id='local-syslog', path='/var/log/syslog', charset='UTF-8
→˓', outputs='', content-splitter='NEWLINE'}
2015-05-12T16:00:11.516+0200 INFO [main] o.graylog.collector.cli.commands.Run -
→˓Service RUNNING: GelfOutput{port='12201', id='gelf-tcp', client-send-buffer-size=
→˓'32768', host='127.0.0.1', inputs='', client-reconnect-delay='1000', client-connect-
→˓timeout='5000', client-tcp-no-delay='true', client-queue-size='512'}
2015-05-12T16:00:11.516+0200 INFO [main] o.graylog.collector.cli.commands.Run -
→˓Service RUNNING: HeartbeatService [RUNNING]
2015-05-12T16:00:11.516+0200 INFO [main] o.graylog.collector.cli.commands.Run -
→˓Service RUNNING: StdoutOutput{id='console', inputs=''}

Troubleshooting

Unable to send heartbeat

The collector registers with your Graylog server on a regular basis to make sure it shows up on the Collectors page
in the Graylog web interface. This registration can fail if the collector cannot connect to the server via HTTP on port
12900:

2015-06-06T10:45:14.964+0200 WARN [HeartbeatService RUNNING] collector.heartbeat.
→˓HeartbeatService - Unable to send heartbeat to Graylog server: ConnectException:
→˓Connection refused

Possible solutions

5.5. Troubleshooting 59

Graylog Documentation, Release 1.1.6

• Make sure the server REST API is configured to listen on a reachable IP address. Change the “rest_listen_uri”
setting in the Graylog server config to this: rest_listen_uri = http://0.0.0.0:12900/

• Correctly configure any firewalls between the collector and the server to allow HTTP traffic to port 12900.

60 Chapter 5. Graylog Collector

CHAPTER 6

Search query language

Syntax

The search syntax is very close to the Lucene syntax. By default all message fields are included in the search if you
don’t specify a message field to search in.

Messages that include the term ssh:

ssh

Messages that include the term ssh or login:

ssh login

Messages that include the exact phrase ssh login:

"ssh login"

Messages where the field type includes ssh:

type:ssh

Messages where the field type includes ssh or login:

type:(ssh login)

Messages where the field type includes the exact phrase ssh login:

type:"ssh login"

Messages that do not have the field type:

missing:type

Messages that have the field type:

61

Graylog Documentation, Release 1.1.6

exists:type

By default all terms or phrases are OR connected so all messages that have at least one hit are returned. You can use
Boolean operators and groups for control over this:

"ssh login" AND source:example.org
("ssh login" AND (source:example.org OR source:another.example.org)) OR _exists_
→˓:always_find_me

You can also use the NOT operator:

"ssh login" AND NOT source:example.org
NOT example.org

**Note that AND, OR, and NOT are case sensitive and must be typed in all upper-case.

Wildcards: Use ? to replace a single character or * to replace zero or more characters:

source:*.org
source:exam?le.org
source:exam?le.*

Note that leading wildcards are disabled to avoid excessive memory consumption! You can enable them in your
graylog-server.conf: allow_leading_wildcard_searches = true

Also note that message, full_message, and source are the only fields that can be searched via wildcard by default.

Fuzziness: You can search for similar but not equal terms:

ssh logni~
source:exmaple.org~

This is using the Damerau–Levenshtein distance with a default distance of 2. You can change the distance like this:

source:exmaple.org~1

You can also use the fuzzyness operator to do a proximity search where the terms in a phrase can have different/fuzzy
distances from each other and don’t have to be in the defined order:

"foo bar"~5

Numeric fields support range queries. Ranges in square brackets are inclusive, curly brackets are exclusive and can
even be combined:

http_response_code:[500 TO 504]
http_response_code:{400 TO 404}
bytes:{0 TO 64]
http_response_code:[0 TO 64}

You can also do searches with one side unbounded:

http_response_code:>400
http_response_code:<400
http_response_code:>=400
http_response_code:<=400

It is also possible to combine unbounded range operators:

62 Chapter 6. Search query language

http://en.wikipedia.org/wiki/Damerau-Levenshtein_distance

Graylog Documentation, Release 1.1.6

http_response_code:(>=400 AND <500)

Escaping

The following characters must be escaped with a backslash:

&& || : \ / + - ! () { } [] ^ " ~ * ?

Example:

resource:\/posts\/45326

Time frame selector

The time frame selector defines in what time range to search in. It offers three different ways of selecting a time range
and is vital for search speed: If you know you are only interested in messages of the last hour, only search in that time
frame. This will make Graylog search in relevant indices only and greatly reduce system load and required resources.
You can read more about this here: The Graylog index model explained

Keyword time frame selector

Graylog offers a keyword time frame selector that allows you to specify the time frame for the search in natural
language like last hour or last 90 days. The web interface shows a preview of the two actual timestamps that will be
used for the search.

Here are a few examples for possible values.

• “last month” searches between one month ago and now

• “4 hours ago” searches between four hours ago and now

• “1st of april to 2 days ago” searches between 1st of April and 2 days ago

• “yesterday midnight +0200 to today midnight +0200” searches between yesterday midnight and today midnight
in timezone +0200 - will be 22:00 in UTC

The time frame is parsed using the natty natural language parser. Please consult its documentation for details.

Search result highlighting

Graylog supports search result highlighting since v0.20.2:

6.2. Escaping 63

http://natty.joestelmach.com/

Graylog Documentation, Release 1.1.6

Enabling/Disabling search result highlighting

Using search result highlighting will result in slightly higher resource consumption of searches. You can enable and
disable it using a configuration parameter in the graylog.conf of your graylog-server nodes:

allow_highlighting = true

64 Chapter 6. Search query language

CHAPTER 7

Streams

What are streams?

The Graylog streams are a mechanism to route messages into categories in realtime while they are processed. You
define rules that instruct Graylog which message to route into which streams. Imagine sending these three messages
to Graylog:

message: INSERT failed (out of disk space)
level: 3 (error)
source: database-host-1

message: Added user 'foo'.
level: 6 (informational)
source: database-host-2

message: smtp ERR: remote closed the connection
level: 3 (error)
source: application-x

One of the many things that you could do with streams is creating a stream called Database errors that is catching
every error message from one of your database hosts.

Create a new stream with these rules: (stream rules are AND connected)

• Field level must be greater than 4

• Field source must match regular expression ^database-host-\d+

This will route every new message with a level higher than WARN and a source that matches the database host
regular expression into the stream.

A message will be routed into every stream that has all its rules matching. This means that a message can be part of
many streams and not just one.

The stream is now appearing in the streams list and a click on its title will show you all database errors.

65

Graylog Documentation, Release 1.1.6

The next parts of this document cover how to be alerted in case of too many errors, some specific error types that
should never happen or how to forward the errors to another system or endpoint.

What’s the difference to saved searches?

The biggest difference is that streams are processed in realtime. This allows realtime alerting and forwarding to other
systems. Imagine forwarding your database errors to another system or writing them to a file by regularly reading
them from the message storage. Realtime streams do this much better.

Another difference is that searches for complex stream rule sets are always comparably cheap to perform because a
message is tagged with stream IDs when processed. A search for Graylog internally always looks like this, no matter
how many stream rules you have configured:

streams:[STREAM_ID]

Building a query with all rules would cause significantly higher load on the message storage.

How do I create a stream?

1. Navigate to the streams section from the top navigation bar

2. Click “Create stream”

3. Save the stream after entering a name and a description. For example All error messages and Catching all error
messages from all sources

4. The stream is now saved but not yet activated. Add stream rules in the next dialogue. Try it against some
messages by entering a message ID on the same page. Save the rules when the right messages are matched or
not matched.

5. The stream is marked as paused in the list of streams. Activate the stream by hitting Resume this stream in the
Action dropdown.

Alerts

You can define conditions that trigger alerts. For example whenever the stream All production exceptions has more
than 50 messages per minute or when the field milliseconds had a too high standard deviation in the last five minutes.

Hit Manage alerts in the stream Action dropdown to see already configured alerts, alerts that were fired in the past or
to configure new alert conditions.

You can configure the interval for alert checks in your graylog.conf using the alert_check_interval variable. The
default is to check for alerts every 60 seconds.

Graylog ships with default alert callbacks and can be extended with plugins

Alert condition types explained

Message count condition

This condition triggers whenever the stream received more than X messages in the last Y minutes. Perfect for example
to be alerted when there are many exceptions on your platform. Create a stream that catches every error message and
be alerted when that stream exceeds normal throughput levels.

66 Chapter 7. Streams

https://www.graylog.org/resources/documentation/general/plugins

Graylog Documentation, Release 1.1.6

Field value condition

Triggers whenever the result of a statistical computation of a numerical message field in the stream is higher or lower
than a given threshold. Perfect to monitor for performance problems: Be alerted whenever the standard deviation of
the response time of your application was higher than X in the last Y minutes.

Field string value condition

This condition triggers whenever the stream received at least one message since the last alert run that has a field set to
a given value. Get an alert when a message with the field type set to security arrives in the stream.

Important: We do not recommend to run this on analyzed fields like message or full_message because it is broken
down to terms and you might get unexpected alerts. For example a check for security would also alert if a message
with the field set to no security is received because it was broken down to no and security. This only happens on the
analyzed message and full_message in Graylog. Please also take note that only a single alert is raised for this condition
during the alerting interval, although multiple messages containing the given value may have been received since the
last alert.

What is the difference between alert callbacks and alert receivers?

There are two groups of entities configuring what happens when an alert is fired: Alarm callbacks and alert receivers.

Alarm callbacks are a list of events that are being processed when an alert is triggered. There could be an arbitrary
number of alarm callbacks configured here. If there is no alarm callback configured at all, a default email transport
will be used to notify about the alert. If one or more alarm callbacks are configured (which might include the email
alarm callback or not) then all of them are executed for every alert.

If the email alarm callback is used because it appears once or multiple times in the alarm callback list, or the alarm
callback list is empty so the email transport is used per default, then the list of alert receivers is used to determine
which recipients should receive the alert nofications. Every Graylog user (which has an email address configured in
their account) or email address in that list gets a copy of the alerts sent out.

Email Alert Callback

The email alert callback can be used to send an email to the configured alert receivers when the conditions are triggered.

Three configuration options are available for the alert callback to customize the email that will be sent.

7.2. Alerts 67

Graylog Documentation, Release 1.1.6

The email body and email subject are JMTE templates. JMTE is a minimal template engine that supports variables,
loops and conditions. See the JMTE documentation for a language reference.

We expose the following objects to the templates.

68 Chapter 7. Streams

https://github.com/DJCordhose/jmte
https://cdn.rawgit.com/DJCordhose/jmte/master/doc/index.html

Graylog Documentation, Release 1.1.6

stream The stream this alert belongs to.

• stream.id ID of the stream

• stream.title title of the stream

• stream.description stream description

stream_url A string that contains the HTTP URL to the stream.

check_result The check result object for this stream.

• check_result.triggeredCondition string representation of the triggered alert condition

• check_result.triggeredAt date when this condition was triggered

• check_result.resultDescription text that describes the check result

backlog A list of message objects. Can be used to iterate over the messages via foreach.

message (only available via iteration over the backlog object) The message object has several fields with de-
tails about the message. When using the message object without accessing any fields, the toString()
method of the underlying Java object is used to display it.

• message.id autogenerated message id

• message.message the actual message text

• message.source the source of the message

• message.timestamp the message timestamp

• message.fields map of key value pairs for all the fields defined in the message

The message.fields fields can be useful to get access to arbitrary fields that are defined in the message.
For example message.fields.full_message would return the full_message of a GELF message.

Outputs

The stream output system allows you to forward every message that is routed into a stream to other destinations.

Outputs are managed globally (like message inputs) and not for single streams. You can create new outputs and
activate them for as many streams as you like. This way you can configure a forwarding destination once and select
multiple streams to use it.

Graylog ships with default outputs and can be extended with plugins.

Use cases

These are a few example use cases for streams:

• Forward a subset of messages to other data analysis or BI systems to reduce their license costs.

• Monitor exception or error rates in your whole environment and broken down per subsystem.

• Get a list of all failed SSH logins and use the quickvalues to analyze which user names where affected.

• Catch all HTTP POST requests to /login that were answered with a HTTP 302 and route them into a stream
called Successful user logins. Now get a chart of when users logged in and use the quickvalues to get a list of
users that performed the most logins in the search time frame.

7.3. Outputs 69

http://www.graylog.org/resources/documentation/general/plugins

Graylog Documentation, Release 1.1.6

How are streams processed internally?

The most important thing to know about Graylog stream matching is that there is no duplication of stored messages.
Every message that comes in is matched against all rules of a stream. The internal ID of every stream that has all rules
matching is appended to the streams array of the processed message.

All analysis methods and searches that are bound to streams can now easily narrow their operation by searching with
a streams:[STREAM_ID] limit. This is done automatically by Graylog and does not have to be provided by the
user.

70 Chapter 7. Streams

Graylog Documentation, Release 1.1.6

Stream Processing Runtime Limits

An important step during the processing of a message is the stream classification. Every message is matched against
the user-configured stream rules. If every rule of a stream matches, the message is added to this stream. Applying
stream rules is done during the indexing of a message only, so the amount of time spent for the classification of a
message is crucial for the overall performance and message throughput the system can handle.

There are certain scenarios when a stream rule takes very long to match. When this happens for a number of messages,
message processing can stall, messages waiting for processing accumulate in memory and the whole system could
become non-responsive. Messages are lost and manual intervention would be necessary. This is the worst case
scenario.

To prevent this, the runtime of stream rule matching is limited. When it is taking longer than the configured runtime
limit, the process of matching this exact message against the rules of this specific stream is aborted. Message process-
ing in general and for this specific message continues though. As the runtime limit needs to be configured pretty high
(usually a magnitude higher as a regular stream rule match takes), any excess of it is considered a fault and is recorded
for this stream. If the number of recorded faults for a single stream is higher than a configured threshold, the stream
rule set of this stream is considered faulty and the stream is disabled. This is done to protect the overall stability and
performance of message processing. Obviously, this is a tradeoff and based on the assumption, that the total loss of
one or more messages is worse than a loss of stream classification for these.

There are scenarios where this might not be applicable or even detrimental. If there is a high fluctuation of the message
load including situations where the message load is much higher than the system can handle, overall stream matching
can take longer than the configured timeout. If this happens repeatedly, all streams get disabled. This is a clear
indicator that your system is overutilized and not able to handle the peak message load.

How to configure the timeout values if the defaults do not match

There are two configuration variables in the configuration file of the server, which influence the behavior of this
functionality.

• stream_processing_timeout defines the maximum amount of time the rules of a stream are able to
spend. When this is exceeded, stream rule matching for this stream is aborted and a fault is recorded. This
setting is defined in milliseconds, the default is 2000 (2 seconds).

• stream_processing_max_faults is the maximum number of times a single stream can exceed this
runtime limit. When it happens more often, the stream is disabled until it is manually reenabled. The default for
this setting is 3.

What could cause it?

If a single stream has been disabled and all others are doing well, the chances are high that one or more stream rules are
performing bad under certain circumstances. In most cases, this is related to stream rules which are utilizing regular
expressions. For most other stream rules types the general runtime is constant, while it varies very much for regular
expressions, influenced by the regular expression itself and the input matched against it. In some special cases, the
difference between a match and a non-match of a regular expression can be in the order of 100 or even 1000. This is
caused by a phenomenon called catastrophic backtracking. There are good write-ups about it on the web which will
help you understanding it.

Summary: How do I solve it?

1. Check the rules of the stream that is disabled for rules that could take very long (especially regular expressions).

2. Modify or delete those stream rules.

7.6. Stream Processing Runtime Limits 71

Graylog Documentation, Release 1.1.6

3. Re-enable the stream.

Programmatic access via the REST API

Many organisations already run monitoring infrastructure that are able to alert operations staff when incidents are
detected. These systems are often capable of either polling for information on a regular schedule or being pushed new
alerts - this article describes how to use the Graylog Stream Alert API to poll for currently active alerts in order to
further process them in third party products.

Checking for currently active alert/triggered conditions

Graylog stream alerts can currently be configured to send emails when one or more of the associated alert conditions
evaluate to true. While sending email solves many immediate problems when it comes to alerting, it can be helpful to
gain programmatic access to the currently active alerts.

Each stream which has alerts configured also has a list of active alerts, which can potentially be empty if there were no
alerts so far. Using the stream’s ID, one can check the current state of the alert conditions associated with the stream
using the authenticated API call:

GET /streams/<streamid>/alerts/check

It returns a description of the configured conditions as well as a count of how many triggered the alert. This data can
be used to for example send SNMP traps in other parts of the monitoring system.

Sample JSON return value:

{
"total_triggered": 0,
"results": [
{

"condition": {
"id": "984d04d5-1791-4500-a17e-cd9621cc2ea7",
"in_grace": false,
"created_at": "2014-06-11T12:42:50.312Z",
"parameters": {
"field": "one_minute_rate",
"grace": 1,
"time": 1,
"backlog": 0,
"threshold_type": "lower",
"type": "mean",
"threshold": 1

},
"creator_user_id": "admin",
"type": "field_value"

},
"triggered": false

}
],
"calculated_at": "2014-06-12T13:44:20.704Z"

}

Note that the result is cached for 30 seconds.

72 Chapter 7. Streams

Graylog Documentation, Release 1.1.6

List of already triggered stream alerts

Checking the current state of a stream’s alerts can be useful to trigger alarms in other monitoring systems, but if one
wants to send more detailed messages to operations, it can be very helpful to get more information about the current
state of the stream, for example the list of all triggered alerts since a certain timestamp.

This information is available per stream using the call:

GET /streams/<streamid>/alerts?since=1402460923

The since parameter is a unix timestamp value. Its return value could be:

{
"total": 1,
"alerts": [
{

"id": "539878473004e72240a5c829",
"condition_id": "984d04d5-1791-4500-a17e-cd9621cc2ea7",
"condition_parameters": {

"field": "one_minute_rate",
"grace": 1,
"time": 1,
"backlog": 0,
"threshold_type": "lower",
"type": "mean",
"threshold": 1

},
"description": "Field one_minute_rate had a mean of 0.0 in the last 1 minutes

→˓with trigger condition lower than 1.0. (Current grace time: 1 minutes)",
"triggered_at": "2014-06-11T15:39:51.780Z",
"stream_id": "53984d8630042acb39c79f84"

}
]

}

Using this information more detailed messages can be produced, since the response contains more detailed information
about the nature of the alert, as well as the number of alerts triggered since the timestamp provided.

Note that currently a maximum of 300 alerts will be returned.

FAQs

Using regular expressions for stream matching

Stream rules support matching field values using regular expressions. Graylog uses the Java Pattern class to execute
regular expressions.

For the individual elements of regular expression syntax, please refer to Oracle’s documentation, however the syntax
largely follows the familiar regular expression languages in widespread use today and will be familiar to most.

However, one key question that is often raised is matching a string in case insensitive manner. Java regular expressions
are case sensitive by default. Certain flags, such as the one to ignore case sensitivity can either be set in the code, or
as an inline flag in the regular expression.

To for example route every message that matches the browser name in the following user agent string:

7.8. FAQs 73

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Graylog Documentation, Release 1.1.6

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko)
→˓Chrome/32.0.1700.107 Safari/537.36

the regular expression .*applewebkit.* will not match because it is case sensitive. In order to match the expres-
sion using any combination of upper- and lowercase characters use the (?i) flag as such:

(?i).*applewebkit.*

Most of the other flags supported by Java are rarely used in the context of matching stream rules or extractors, but if
you need them their use is documented on the same Javadoc page by Oracle.

Can I add messages to a stream after they were processed and stored?

No. Currently there is no way to re-process or re-match messages into streams.

Only new messages are routed into the current set of streams.

Can I write own outputs or alert callbacks methods?

Yes. Please refer to the plugins documentation page.

74 Chapter 7. Streams

http://www.graylog.org/resources/documentation/general/plugins

CHAPTER 8

Dashboards

Why dashboards matter

Using dashboards allows you to build pre-defined views on your data to always have everything important just one
click away.

Sometimes it takes domain knowledge to be able to figure out the search queries to get the correct results for your
specific applications. People with the required domain knowledge can define the search query once and then display
the results on a dashboard to share them with co-workers, managers, or even sales and marketing departments.

This guide will take you through the process of creating dashboards and storing information on them. At the end you
will have a dashboard with automatically updating information that you can share with anybody or just a subset of
people based on permissions.

75

Graylog Documentation, Release 1.1.6

How to use dashboards

Creating an empty dashboard

Navigate to the Dashboards section using the link in the top menu bar of your Graylog web interface. The page is
listing all dashboards that you are allowed to view. (More on permissions later.) Hit the Create dashboard button to
create a new empty dashboard.

The only required information is a title and a description of the new dashboard. Use a specific but not too long title
so people can easily see what to expect on the dashboard. The description can be a bit longer and could contain more
detailed information about the displayed data or how it is collected.

Hit the Create button to create the dashboard. You should now see your new dashboard on the dashboards overview
page. Click on the title of your new dashboard to see it. Next, we will be adding widgets to the dashboard we have
just created.

76 Chapter 8. Dashboards

Graylog Documentation, Release 1.1.6

Adding widgets

You should have your empty dashboard in front of you. Let’s add some widgets! You can add search result information
to dashboards with just one click. The following search result types can be added to dashboards:

• Search result counts

• Search result histogram charts

• Field value charts

• Quickvalue results

Once you can see the results of your search, you will see a small blue icon next to the right of the result
count and histogram title. Hovering over this will show “Add to dashboard” and clicking the icon will
prompt you with a list of dashboards you’ve created. Select a dashboard to add the widget to it.

Examples

It is strongly recommended to read the getting started guide on basic searches and analysis first. This will make the
following examples more obvious for you.

• Top log sources today

– Example search: *, timeframe: Last 24 hours

– Expand the source field in the the sidebar and hit Quick values

– Add quick values to dashboard

8.3. Examples 77

Graylog Documentation, Release 1.1.6

• Number of exceptions in a given app today

– Example search: source:myapp AND Exception, timeframe: Last 24 hours

– Add search result count to dashboard

• Response time chart of a given app

– Example search: source:myapp2, any timeframe you want

– Expand a field representing the response time of requests in the sidebar and hit Generate chart

– Add chart to dashboard

Widgets from streams

You can of course also add widgets from stream search results. Every widget added this way will always be bound to
streams. If you have a stream that contains every SSH login you can just search for everything (*) in that stream and
store the result count as SSH logins on a dashboard.

Result

You should now see widgets on your dashboard. You will learn how to modify the dashboard, change cache times and
widget positioning in the next chapter.

Modifying dashboards

You need to unlock dashboards to make any changes to them. Hit the lock icon in the top right corner of a dashboard
to unlock it. You should now see new icons in the widget appearing.

Unlocked dashboard widgets explained

Unlocked dashboard widgets have three buttons that should be pretty self-explanatory.

• Delete widget

• Change cache time of widget

• Change title of widget

Widget cache times

Widget values are cached in graylog-server by default. This means that the cost of value computation does
not grow with every new device or even browser tab displaying a dashboard. Some widgets might need to show
real-time information (set cache time to 1 second) and some widgets might be updated way less often (like Top SSH
users this month, cache time 10 minutes) to save expensive computation resources.

78 Chapter 8. Dashboards

Graylog Documentation, Release 1.1.6

Repositioning widgets

Just grab a widget with your mouse in unlocked dashboard mode and move it around. Other widgets should adopt and
re-position intelligently to make place for the widget you are moving. The positions are automatically saved when
dropping a widget.

Dashboard permissions

Graylog users with administrator permissions are always allowed to view and edit all dashboards. Users with reader
permissions are by default not allowed to view or edit any dashboard.

Navigate to System -> Users and select a reader user you wish to give dashboard permissions. Hit the edit button and
assign dashboard view and edit permissions in the edit user dialogue. Don’t forget to save the user!

8.6. Dashboard permissions 79

Graylog Documentation, Release 1.1.6

That’s it!

Congratulations, you have just gone through the basic principles of Graylog dashboards. Now think about which
dashboards to create. We suggest:

• Create dashboards for yourself and your team members

• Create dashboards to share with your manager

• Create dashboards to share with the CIO of your company

Think about which information you need access to frequently. What information could your manager or CIO be
interested in? Maybe they want to see how the number of exceptions went down or how your team utilized existing
hardware better. The sales team could be interested to see signup rates in realtime and the marketing team will love
you for providing insights into low level KPIs that is just a click away.

80 Chapter 8. Dashboards

CHAPTER 9

Extractors

The problem explained

Syslog (RFC3164, RFC5424) is the de facto standard logging protocol since the 1980s and was originally developed
as part of the sendmail project. It comes with some annoying shortcomings that we tried to improve in GELF for
application logging.

Because syslog has a clear specification in its RFCs it should be possible to parse it relatively easy. Unfortunately there
are a lot of devices (especially routers and firewalls) out there that send logs looking like syslog but actually breaking
several rules stated in the RFCs. We tried to write a parser that reads all of them as good as possible and failed. Such
a loosely defined text message usually breaks the compatibility in the first date field already. Some devices leave out
hostnames completely, some use localized time zone names (e. g. “MESZ” instead of “CEST”), and some just omit
the current year in the timestamp field.

Then there are devices out there that at least do not claim to send syslog when they don’t but have another completely
separate log format that needs to be parsed specifically.

We decided not to write custom message inputs and parsers for all those thousands of devices, formats, firmwares
and configuration parameters out there but came up with the concept of Extractors introduced the v0.20.0 series of
Graylog.

Graylog extractors explained

The extractors allow you to instruct Graylog nodes about how to extract data from any text in the received message (no
matter from which format or if an already extracted field) to message fields. You may already know why structuring
data into fields is important if you are using Graylog: There are a lot of analysis possibilities with full text searches
but the real power of log analytics unveils when you can run queries like http_response_code:>=500 AND
user_id:9001 to get all internal server errors that were triggered by a specific user.

Wouldn’t it be nice to be able to search for all blocked packages of a given source IP or to get a quickterms analysis
of recently failed SSH login usernames? Hard to do when all you have is just a single long text message.

81

http://tools.ietf.org/html/rfc3164
http://tools.ietf.org/html/rfc5424
http://www.graylog.org/gelf

Graylog Documentation, Release 1.1.6

Creating extractors is possible via either Graylog REST API calls or from the web interface using a wizard. Select a
message input on the System -> Inputs page and hit Manage extractors in the actions menu. The wizard allows you to
load a message to test your extractor configuration against. You can extract data using for example regular expressions,
Grok patterns, substrings, or even by splitting the message into tokens by separator characters. The wizard looks like
this and should be pretty intuitive:

You can also choose to apply so called converters on the extracted value to for example convert a string consisting of
numbers to an integer or double value (important for range searches later), anonymize IP addresses, lower-/uppercase
a string, build a hash value, and much more.

The extractor directory

The data source library provides access to a lot of extractors that you can easily import into your Graylog setup.

Just copy the JSON extractor export into the import dialog of a message input of the fitting type (every extractor set
entry in the directory tells you what type of input to spawn, e. g. syslog, GELF, or Raw/plaintext) and you are good to
go. The next messages coming in should already include the extracted fields with possibly converted values.

A message sent by Heroku and received by Graylog with the imported Heroku extractor set on a plaintext TCP input
looks like this: (look at the extracted fields in the message detail view)

82 Chapter 9. Extractors

https://www.graylog.org/supported-sources

Graylog Documentation, Release 1.1.6

Using regular expressions to extract data

Extractors support matching field values using regular expressions. Graylog uses the Java Pattern class to evaluate
regular expressions.

For the individual elements of regular expression syntax, please refer to Oracle’s documentation, however the syntax
largely follows the familiar regular expression languages in widespread use today and will be familiar to most.

However, one key question that is often raised is matching a string in case insensitive manner. Java regular expressions
are case sensitive by default. Certain flags, such as the one to ignore case sensitivity can either be set in the code, or
as an inline flag in the regular expression.

To for example create an extractor that matches the browser name in the following user agent string:

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_1) AppleWebKit/537.36 (KHTML, like Gecko)
→˓Chrome/32.0.1700.107 Safari/537.36

the regular expression (applewebkit) will not match because it is case sensitive. In order to match the expression
using any combination of upper- and lowercase characters use the (?i) flag as such:

(?i)(applewebkit)

Most of the other flags supported by Java are rarely used in the context of matching stream rules or extractors, but if you
need them their use is documented on the same Javadoc page by Oracle. One common reason to use regular expression
flags in your regular expression is to make use of what is called non-capturing groups. Those are parentheses which
only group alternatives, but do not make Graylog extract the data they match and are indicated by (?:).

9.4. Using regular expressions to extract data 83

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Graylog Documentation, Release 1.1.6

Using Grok patterns to extract data

Graylog also supports the extracting data using the popular Grok language to allow you to make use of your existing
patterns.

Grok is a set of regular expressions that can be combined to more complex patterns, allowing to name different parts
of the matched groups.

By using Grok patterns, you can extract multiple fields from a message field in a single extractor, which often simplifies
specifying extractors.

Simple regular expressions are often sufficient to extract a single word or number from a log line, but if you know
the entire structure of a line beforehand, for example for an access log, or the format of a firewall log, using Grok is
advantageous.

For example a firewall log line could contain:

len=50824 src=172.17.22.108 sport=829 dst=192.168.70.66 dport=513

We can now create the following patterns on the System/Grok Patterns page in the web interface:

BASE10NUM (?<![0-9.+-])(?>[+-]?(?:(?:[0-9]+(?:\.[0-9]+)?)|(?:\.[0-9]+)))
NUMBER (?:%{BASE10NUM})
IPV6 ((([0-9A-Fa-f]{1,4}:){7}([0-9A-Fa-f]{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-
→˓f]{1,4}|((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}
→˓)|:))|(([0-9A-Fa-f]{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-
→˓4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3})|:))|(([0-9A-Fa-f]{1,4}
→˓:){4}(((:[0-9A-Fa-f]{1,4}){1,3})|((:[0-9A-Fa-f]{1,4})?:((25[0-5]|2[0-4]\d|1\d\d|[1-
→˓9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){3}(((:[0-
→˓9A-Fa-f]{1,4}){1,4})|((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.
→˓(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){2}(((:[0-9A-Fa-f]
→˓{1,4}){1,5})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-
→˓5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}))|:))|(([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4})
→˓{1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-
→˓4]\d|1\d\d|[1-9]?\d)){3}))|:))|(:(((:[0-9A-Fa-f]{1,4}){1,7})|((:[0-9A-Fa-f]{1,4}){0,
→˓5}:((25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)(\.(25[0-5]|2[0-4]\d|1\d\d|[1-9]?\d)){3}
→˓))|:)))(%.+)?
IPV4 (?<![0-9])(?:(?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-
→˓9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})[.](?:25[0-5]|2[0-
→˓4][0-9]|[0-1]?[0-9]{1,2}))(?![0-9])
IP (?:%{IPV6}|%{IPV4})
DATA .*?

Then, in the extractor configuration, we can use these patterns to extract the relevant fields from the line:

len=%{NUMBER:length} src=%{IP:srcip} sport=%{NUMBER:srcport} dst=%{IP:dstip} dport=%
→˓{NUMBER:dstport}

This will add the relevant extracted fields to our log message, allowing Graylog to search on those individual fields,
which can lead to more effective search queries by allowing to specifically look for packets that came from a specific
source IP instead of also matching destination IPs if one would only search for the IP across all fields.

If the Grok pattern creates many fields, which can happen if you make use of heavily nested patterns, you can tell Gray-
log to skip certain fields (and the output of their subpatterns) by naming a field with the special keyword UNWANTED.

Let’s say you want to parse a line like:

type:44 bytes:34 errors:122

84 Chapter 9. Extractors

Graylog Documentation, Release 1.1.6

but you are only interested in the second number bytes. You could use a pattern like:

type:%{BASE10NUM:type} bytes:%{BASE10NUM:bytes} errors:%{BASE10NUM:errors}

However, this would create three fields named type, bytes, and errors. Even not naming the first and last
patterns would still create a field names BASE10NUM. In order to ignore fields, but still require matching them use
UNWANTED:

type:%{BASE10NUM:UNWANTED} bytes:%{BASE10NUM:bytes} errors:%{BASE10NUM:UNWANTED}

This now creates only a single field called bytes while making sure the entire pattern must match.

If you already know the data type of the extracted fields, you can make use of the type conversion feature built into the
Graylog Grok library. Going back to the earlier example:

len=50824 src=172.17.22.108 sport=829 dst=192.168.70.66 dport=513

We know that the content of the field len is an integer and would like to make sure it is stored with that data type, so
we can later create field graphs with it or access the field’s statistical values, like average etc.

Grok directly supports converting field values by adding ;datatype at the end of the pattern, like:

len=%{NUMBER:length;int} src=%{IP:srcip} sport=%{NUMBER:srcport} dst=%{IP:dstip}
→˓dport=%{NUMBER:dstport}

The currently supported data types, and their corresponding ranges and values, are:

Type Range Example
byte -128 ... 127 %{NUMBER:fieldname;byte}
short -32768 ... 32767 %{NUMBER:fieldname;short}
int -2^31 ... 2^31 -1 %{NUMBER:fieldname;int}
long -2^63 ... 2^63 -1 %{NUMBER:fieldname;long}
float 32-bit IEEE 754 %{NUMBER:fieldname;float}
double 64-bit IEEE 754 %{NUMBER:fieldname;double}
boolean true, false %{DATA:fieldname;boolean}
string Any UTF-8 string %{DATA:fieldname;string}
date See SimpleDateFormat %{DATA:timestamp;date;dd/MMM/yyyy:HH:mm:ss Z}
datetime Alias for date

There are many resources are the web with useful patterns, and one very helpful tool is the Grok Debugger, which
allows you to test your patterns while you develop them.

Graylog uses Java Grok to parse and run Grok patterns.

Normalization

Many log formats are similar to each other, but not quite the same. In particular they often only differ in the names
attached to pieces of information.

For example, consider different hardware firewall vendors, whose models log the destination IP in different fields of
the message, some use dstip, some dst and yet others use destination-address:

2004-10-13 10:37:17 PDT Packet Length=50824, Source address=172.17.22.108, Source
→˓port=829, Destination address=192.168.70.66, Destination port=513
2004-10-13 10:37:17 PDT len=50824 src=172.17.22.108 sport=829 dst=192.168.70.66
→˓dport=513
2004-10-13 10:37:17 PDT length="50824" srcip="172.17.22.108" srcport="829" dstip="192.
→˓168.70.66" dstport="513"

9.6. Normalization 85

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://grokdebug.herokuapp.com/
http://grok.nflabs.com/

Graylog Documentation, Release 1.1.6

You can use one or more non-capturing groups to specify the alternatives of the field names, but still be able to extract
the a parentheses group in the regular expression. Remember that Graylog will extract data from the first matched
group of the regular expression. An example of a regular expression matching the destination IP field of all those log
messages from above is:

(?:dst|dstip|[dD]estination\saddress)="?(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})"?

This will only extract the IP address without caring about which of the three naming schemes was used in the original
log message. This way you don’t have to set up three different extractors.

The standard date converter

Date parser converters for extractors allow you to convert extracted data into timestamps - Usually used to set the
timestamp of a message based on some date it contains. Let’s assume we have this message from a network device:

<131>: foo-bar-dc3-org-de01: Mar 12 00:45:38: %LINK-3-UPDOWN: Interface
→˓GigabitEthernet0/31, changed state to down

Extracting most of the data is not a problem and can be done easily. Using the date in the message (Mar 12 00:45:38)
as Graylog message timestamp however needs to be done with a date parser converter.

Use a standard extractor rule to select the timestamp and apply the Date converter with a format string:

MMM dd HH:mm:ss

(format string table at the end of this page)

86 Chapter 9. Extractors

Graylog Documentation, Release 1.1.6

9.6. Normalization 87

Graylog Documentation, Release 1.1.6

Standard date converter format string table

Symbol Meaning Presentation Examples
G era text AD
C century of era (>=0) number 20
Y year of era (>=0) year 1996
x weekyear year 1996
w week of weekyear number 27
e day of week number 2
E day of week text Tuesday; Tue
y year year 1996
D day of year number 189
M month of year month July; Jul; 07
d day of month number 10
a halfday of day text PM
K hour of halfday (0~11) number 0
h clockhour of halfday (1~12) number 12
H hour of day (0~23) number 0
k clockhour of day (1~24) number 24
m minute of hour number 30
s second of minute number 55
S fraction of second millis 978
z time zone text Pacific Standard Time; PST
Z time zone offset/id zone -0800; -08:00; America/Los_Angeles
‘ escape for text delimiter
‘’ single quote literal ‘

The flexible date converter

Now imagine you had one of those devices that send messages that are not so easy to parse because they do not follow
a strict timestamp format. Some network devices for example like to send days of the month without adding a padding
0 for the first 9 days. You’ll have dates like Mar 9 and Mar 10 and end up having problems defining a parser string
for that. Or maybe you have something else that is really exotic like just last wednesday as timestamp. The flexible
date converter is accepting any text data and tries to build a date from that as good as it can.

Examples:

• Mar 12, converted at 12:27:00 UTC in the year 2014: 2014-03-12T12:27:00.000

• 2014-3-12 12:27: 2014-03-12T12:27:00.000

• Mar 12 2pm: 2014-03-12T14:00:00.000

Note that the flexible date converter is using UTC as time zone by default unless you have time zone information in
the parsed text or have configured another time zone when adding the flexible date converter to an extractor (see this
comprehensive list of time zones available for the flexible date converter).

88 Chapter 9. Extractors

http://joda-time.sourceforge.net/timezones.html

CHAPTER 10

Message rewriting with Drools

Graylog can optionally use Drools Expert to evaluate all incoming messages against a user defined rules file. Each
message will be evaluated prior to being written to the outputs.

The rule file location is defined in the Graylog configuration file:

Drools Rule File (Use to rewrite incoming log messages)
rules_file = /etc/graylog.d/rules/graylog.drl

The rules file is located on the file system with a .drl file extension. The rules file can contain multiple rules, queries
and functions, as well as some resource declarations like imports, globals, and attributes that are assigned and used by
your rules and queries.

For more information on the DRL rules syntax please read the Drools User Guide.

Getting Started

1. Uncomment the rules_file line in the Graylog configuration file.

2. Copy the sample rules file to the location specified in your Graylog configuration file.

3. Modify the rules file to parse/rewrite/filter messages as needed.

Example rules file

This is an example rules file:

import org.graylog2.plugin.Message

rule "Rewrite localhost host"
when

m : Message(source == "localhost")
then

89

http://www.jboss.org/drools/drools-expert
http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/ch04.html
https://github.com/Graylog2/graylog2-server/blob/1.0.0/misc/graylog2.drl

Graylog Documentation, Release 1.1.6

m.addField("source", "localhost.example.com");
System.out.println("[Overwrite localhost rule fired] : " + m.toString());

end

rule "Drop UDP and ICMP Traffic from firewall"
when

m : Message(getField("full_message") matches "(?i).*(ICMP|UDP) Packet(.
→˓|\n|\r)*" && source == "firewall")

then
m.setFilterOut(true);
System.out.println("[Drop all syslog ICMP and UDP traffic] : " + m.toString()

→˓);
end

Parsing Message and adding fields

In the following script we turn the PID and the src IP into additional fields:

import org.graylog2.plugin.Message
import java.util.regex.Matcher
import java.util.regex.Pattern

// Raw Syslog Apr 18 15:34:58 server01 smtp-glass[3371]: NEW (1/0) on=1.1.1.1:9100,
→˓src=2.2.2.2:38776, ident=, dst=3.3.3.3:25, id=1303151698.3371
rule "SMTP Glass Logging to GELF"

when
m : Message(message matches "^smtp-glass.*")

then
Matcher matcher = Pattern.compile("smtp-glass\\\[(\\\d+)].* src (\\\d+.\\\d+.

→˓\\\d+.\\\d+)").matcher(m.getMessage());
if (matcher.find()) {

m.addField("_pid", Long.valueOf(matcher.group(1)));
m.addField("_src", matcher.group(2));

}
end

Another example: Adding additional fields and changing the message itself

We send Squid access logs to Graylog using Syslog. The problem is that the host field of the message was set to the
IP addrress of the Squid proxy, which not very useful. This rule overwrites the source and adds other fields:

import org.graylog2.plugin.Message
import java.util.regex.Matcher
import java.util.regex.Pattern
import java.net.InetAddress;

/*
Raw Syslog: squid[2099]: 1339551529.881 55647 1.2.3.4 TCP_MISS/200 22 GET http://www.
→˓google.com/

squid\[\d+\]: (\d+\.\d+) *(\d+) *(\d+.\d+.\d+.\d+) *(\w+\/\w+) (\d+) (\w+) (.*)
matched: 13:1339551529.881
matched: 29:55647
matched: 35:1.2.3.4

90 Chapter 10. Message rewriting with Drools

Graylog Documentation, Release 1.1.6

matched: 47:TCP_MISS/200
matched: 60:22
matched: 64:GET
matched: 68:http://www.google.com/

*/

rule "Squid Logging to GELF"
when

m : Message(getField("facility") == "local5")
then

Matcher matcher = Pattern.compile("squid\\[\\d+\\]: (\\d+.\\d+) *(\\d+)
→˓*(\\d+.\\d+.\\d+.\\d+) *(\\w+\\/\\w+) (\\d+) (\\w+) (.*)").matcher(m.getMessage());

if (matcher.find()) {
m.addField("facility", "squid");
InetAddress addr = InetAddress.getByName(matcher.group(3));
String host = addr.getHostName();
m.addField("source",host);
m.addField("message",matcher.group(6) + " " + matcher.group(7));
m.addField("_status",matcher.group(4));
m.addField("_size",matcher.group(5));

}
end

10.3. Parsing Message and adding fields 91

Graylog Documentation, Release 1.1.6

92 Chapter 10. Message rewriting with Drools

CHAPTER 11

Load balancer integration

When running multiple Graylog servers a common deployment scenario is to route the message traffic through an IP
load balancer. By doing this we can achieve both a highly available setup, as well as increasing message processing
throughput, by simply adding more servers that operate in parallel.

Load balancer state

However, load balancers usually need some way of determining whether a backend service is reachable and healthy or
not. For this purpose Graylog exposes a load balancer state that is reachable via its REST API.

There are two ways the load balancer state can change:

• due to a lifecycle change (e.g. the server is starting to accept messages, or shutting down)

• due to manual intervention via the REST API

To query the current load balancer status of a Graylog instance, all you need to do is to issue a HTTP call to its REST
API:

GET /system/lbstatus

The status knows two different states, ALIVE and DEAD, which is also the text/plain response of the resource.
Additionally, the same information is reflected in the HTTP status codes: If the state is ALIVE the return code will be
200 OK, for DEAD it will be 503 Service unavailable. This is done to make it easier to configure a wide
range of load balancer types and vendors to be able to react to the status.

The resource is accessible without authentication to make it easier for load balancers to access it.

To programmatically change the load balancer status, an additional endpoint is exposed:

PUT /system/lbstatus/override/alive
PUT /system/lbstatus/override/dead

Only authenticated and authorized users are able to change the status, in the currently released Graylog version this
means only admin users can change it.

93

Graylog Documentation, Release 1.1.6

Graceful shutdown

Often, when running a service behind a load balancer, the goal is to be able to perform zero-downtime upgrades, by
taking one of the servers offline, upgrading it, and then bringing it back online. During that time the remaining servers
can take the load seamlessly.

By using the load balancer status API described above one can already perform such a task. However, it would still be
guesswork when the Graylog server is done processing all the messages it already accepted.

For this purpose Graylog supports a graceful shutdown command, also accessible via the web interface and API. It
will set the load balancer status to DEAD, stop all inputs, turn on messages processing (should it have been disabled
manually previously), and flush all messages in memory to Elasticsearch. After all buffers and caches are processed,
it will shut itself down safely.

Web Interface

It is possible to use the Graylog web interface behind a load balancer for high availability purposes.

However, in order to make the various metrics work in Graylog’s web interface, you need to enable sticky sessions in
your load balancer, or configure the second instance to be a failover instance only, which only gets requests in case the
first instance is no longer reachable.

There are various terms used for sticky sessions. Session persistence or session management are also in use.

Please refer to your vendor’s documentation to learn about how to enable sticky sessions.

Information for some popular load balancers and their settings can be found through the following links:

• Amazon Web Services ELB

• HAProxy

• F5 BIG-IP

• KEMP

94 Chapter 11. Load balancer integration

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-sticky-sessions.html
http://blog.haproxy.com/2012/03/29/load-balancing-affinity-persistence-sticky-sessions-what-you-need-to-know/
https://support.f5.com/kb/en-us/products/lc_9_x/manuals/product/lc_config_10_2/lc_persist_profiles.html
https://support.kemptechnologies.com/hc/en-us/articles/202040855-What-is-persistence-

CHAPTER 12

The Graylog index model explained

Overview

Graylog is transparently managing a set of indices to optimise search and analysis operations for speed and low
resource utilisation. The system is maintaining an index alias called graylog_deflector that is always pointing to the
current write-active index. We always have exactly one index to which new messages are appended until the configured
maximum size (elasticsearch_max_docs_per_index in your graylog.conf) is reached.

A background task is running every minute and checks if the maximum size is reached. A new index is created and
prepared when that happens. Once the index is considered to be ready to be written to, the graylog_deflector
is atomically switched to the it. That means that all writing nodes can always write to the deflector alias without even
knowing what the currently active write-active index is.

Note that there are also time based retention settings since v1.0 of Graylog. This allows you to instruct Graylog
to keep messages based on their age and not the total amount. You can find the corresponding configuration settings
in your graylog.conf.

95

Graylog Documentation, Release 1.1.6

Almost every read operation is performed with a given time range. Because Graylog is only writing sequentially it can
keep a cached collection of information about which index starts at what point in time. It selects a lists of indices to
query when having a time range provided. If no time range is provided it will search in all indices it knows.

96 Chapter 12. The Graylog index model explained

Graylog Documentation, Release 1.1.6

Eviction of indices and messages

You have configured the maximum number of indices in your graylog.conf
(elasticsearch_max_number_of_indices). When that number is reached the oldest indices will au-
tomatically be deleted. The deleting is performed by the graylog-server master node in a background process that is
continuously comparing the actual number of indices with the configured maximum:

elasticsearch_max_docs_per_index * elasticsearch_max_number_of_indices
= maximum number of messages stored

Keeping the metadata in synchronisation

Graylog will on notify you when the stored metadata about index time ranges has run out of sync. This can for example
happen when you delete indices by hand. The system will offer you to just re-generate all time range information.
This may take a few seconds but is an easy task for Graylog.

You can easily re-build the information yourself after manually deleting indices or doing other changes that might
cause synchronisation problems:

$ curl -XPOST http://127.0.0.1:12900/system/indices/ranges/rebuild

This will trigger a systemjob:

INFO : org.graylog2.system.jobs.SystemJobManager - Submitted SystemJob <ef7057c0-5ae3-
→˓11e3-b935-4c8d79f2b596> [org.graylog2.indexer.ranges.RebuildIndexRangesJob]
INFO : org.graylog2.indexer.ranges.RebuildIndexRangesJob - Re-calculating index
→˓ranges.
INFO : org.graylog2.indexer.ranges.RebuildIndexRangesJob - Calculated range of
→˓[graylog2_56] in [640ms].
INFO : org.graylog2.indexer.ranges.RebuildIndexRangesJob - Calculated range of
→˓[graylog2_18] in [66ms].
...
INFO : org.graylog2.indexer.ranges.RebuildIndexRangesJob - Done calculating index
→˓ranges for 88 indices. Took 4744ms.
INFO : org.graylog2.system.jobs.SystemJobManager - SystemJob <ef7057c0-5ae3-11e3-b935-
→˓4c8d79f2b596> [org.graylog2.indexer.ranges.RebuildIndexRangesJob] finished in
→˓4758ms.

Manually cycling the deflector

Sometimes you might want to cycle the deflector manually and not wait until the configured maximum number of
messages in the newest index is reached. You can do this either via a REST call against the graylog-server master
node or via the web interface:

$ curl -XPOST http://127.0.0.1:12900/system/deflector/cycle

12.2. Eviction of indices and messages 97

Graylog Documentation, Release 1.1.6

This triggers the following log output:

INFO : org.graylog2.rest.resources.system.DeflectorResource - Cycling deflector.
→˓Reason: REST request.
INFO : org.graylog2.indexer.Deflector - Cycling deflector to next index now.
INFO : org.graylog2.indexer.Deflector - Cycling from <graylog2_90> to <graylog2_91>
INFO : org.graylog2.indexer.Deflector - Creating index target <graylog2_91>...
INFO : org.graylog2.indexer.Deflector - Done!
INFO : org.graylog2.indexer.Deflector - Pointing deflector to new target index....
INFO : org.graylog2.indexer.Deflector - Flushing old index <graylog2_90>.
INFO : org.graylog2.indexer.Deflector - Setting old index <graylog2_90> to read-only.
INFO : org.graylog2.system.jobs.SystemJobManager - Submitted SystemJob <a05e0d60-5c34-
→˓11e3-8df7-4c8d79f2b596> [org.graylog2.indexer.indices.jobs.OptimizeIndexJob]
INFO : org.graylog2.indexer.Deflector - Done!
INFO : org.graylog2.indexer.indices.jobs.OptimizeIndexJob - Optimizing index
→˓<graylog2_90>.
INFO : org.graylog2.system.jobs.SystemJobManager - SystemJob <a05e0d60-5c34-11e3-8df7-
→˓4c8d79f2b596> [org.graylog2.indexer.indices.jobs.OptimizeIndexJob] finished in
→˓334ms.

98 Chapter 12. The Graylog index model explained

CHAPTER 13

Indexer failures and dead letters

Indexer failures

Every graylog-server instance is constantly keeping track about every indexing operation it performs. This is
important for making sure that you are not silently losing any messages. The web interface can show you a number of
write operations that failed and also a list of failed operations. Like any other information in the web interface this is
also available via the REST APIs so you can hook it into your own monitoring systems.

99

Graylog Documentation, Release 1.1.6

Information about the indexing failure is stored in a capped MongoDB collection that is limited in size. A lot (many
tens of thousands) of failure messages should fit in there but it should not be considered a complete collection of all
errors ever thrown.

Dead letters

This is an experimental feature. You can enable the dead letters feature in your graylog-server.conf like
this:

dead_letters_enabled = true

Graylog will write every message that could not be written to Elasticsearch into the MongoDB dead_letters
collection. The messages will be waiting there for you to be processed in some other way. You could write a script
that reads every message from there and transforms it in a way that will allow Graylog to accept it.

A dead letter in MongoDB has exactly the structure (in the message field) like the message that would have been
written to the indices:

$ mongo
MongoDB shell version: 2.4.1
connecting to: test
> use graylog2
switched to db graylog2
> db.dead_letters.find().limit(1).pretty()
{

"_id" : ObjectId("530a951b3004ada55961ee22"),
"message" : {

"timestamp" : "2014-02-24 00:40:59.121",
"message" : "failing",
"failure" : "haha",
"level" : NumberLong(6),
"_id" : "544575a0-9cec-11e3-b502-4c8d79f2b596",
"facility" : "gelf-rb",
"source" : "sundaysister",
"gl2_source_input" : "52ef64d03004faafd4bb0fc2",
"gl2_source_node" : "fb66b27e-993c-4595-940f-dd521dcdaa93",
"file" : "(irb)",
"line" : NumberLong(37),
"streams" : [],
"version" : "1.0"

},
"timestamp" : ISODate("2014-02-24T00:40:59.137Z"),
"letter_id" : "54466000-9cec-11e3-b502-4c8d79f2b596"

}

The timestamp is the moment in time when the message could not be written to the indices and the letter_id
references to the failed indexing attempt and its error message.

Every failed indexing attempt comes with a field called written that indicates if a dead letter was created or not:

> db.index_failures.find().limit(1).pretty()
{

"_id" : ObjectId("530a951b3004ada55961ee23"),
"timestamp" : ISODate("2014-02-24T00:40:59.136Z"),
"message" : "MapperParsingException[failed to parse [failure]]; nested:

→˓NumberFormatException[For input string: \"haha\"]; ",
"index" : "graylog2_324",

100 Chapter 13. Indexer failures and dead letters

Graylog Documentation, Release 1.1.6

"written" : true,
"letter_id" : "54466000-9cec-11e3-b502-4c8d79f2b596",
"type" : "message"

}

Common indexer failure reasons

There are some common failures that can occur under certain circumstances. Those are explained here:

MapperParsingException

An error message would look like this:

MapperParsingException[failed to parse [failure]]; nested: NumberFormatException[For
→˓input string: "some string value"];

You tried to write a string into a numeric field of the index. The indexer tried to convert it to a number, but failed
because the string did contain characters that could not be converted.

This can be triggered by for example sending GELF messages with different field types or extractors trying to write
strings without converting them to numeric values first. The recommended solution is to actively decide on field
types. If you sent in a field like http_response_code with a numeric value then you should never change that
type in the future.

The same can happen with all other field types like for example booleans.

Note that index cycling is something to keep in mind here. The first type written to a field per index wins. If the
Graylog index cycles then the field types are starting from scratch for that index. If the first message written to that
index has the http_response_code set as string then it will be a string until the index cycles the next time.
Take a look at The Graylog index model explained for more information.

13.3. Common indexer failure reasons 101

Graylog Documentation, Release 1.1.6

102 Chapter 13. Indexer failures and dead letters

CHAPTER 14

Plugins

General information

Graylog comes with a stable plugin API for the following plugin types since Graylog 1.0:

• Inputs: Accept/write any messages into Graylog

• Outputs: Forward messages to other endpoints in real-time

• Services: Run at startup and able to implement any functionality

• Alarm Callbacks: Called when a stream alert condition has been triggered

• Filters: Transform/drop incoming messages during processing

• REST API Resources: A REST resource to expose as part of the graylog-server REST API

• Periodical: Called at periodical intervals during server runtime

The first for writing a plugin is creating a skeleton that is the same for each type of plugin. The next chapter is
explaining how to do this and will then go over to chapters explaining plugin types in detail.

Creating a plugin skeleton

The easiest way to get started is to use our maven archetype that will create a complete plugin project infrastructure
will all required classes, build definitions, and configurations using an interactive wizard.

Maven is a Java widely used build tool that comes pre-installed on many operating systems or can be installed using
most package managers. Make sure that it is installed with at least version 3 before you go on.

Use it like this:

$ mvn archetype:generate -DarchetypeGroupId=org.graylog -DarchetypeArtifactId=graylog-
→˓plugin-archetype

103

http://maven.apache.org/guides/introduction/introduction-to-archetypes.html

Graylog Documentation, Release 1.1.6

It wil ask you a few questions about the plugin you are planning to build. Let’s say you work for a company called
ACMECorp and want to build an alarm callback plugin that creates a JIRA ticket for each alarm that is triggered:

groupId: com.acmecorp
artifactId: jira-alarmcallback
version: 1.0.0-SNAPSHOT
package: com.acmecorp
pluginClassName: JiraAlarmCallback

Note that you do not have to tell the archetype wizard what kind of plugin you want to build because it is creating the
generic plugin skeleton for you but nothing that is related to the actual implementation. More on this in the example
plugin chapters later.

You now have a new folder called jira-alarmcallback that includes a complete plugin skeleton including
Maven build files. Every Java IDE out there can now import the project automatically without any required further
configuration.

In IntelliJ IDEA for example you can just use the File -> Open dialog to open the skeleton as a fully configured Java
project.

Change some default values

Open the JiraAlarmCallbackMetaData.java file and customize the default values like the plugin description,
the website URI, and so on. Especially the author name etc. should be changed.

Now go on with implementing the actual login in one of the example plugin chapters below.

Example Alarm Callback plugin

Let’s assume you still want to build the mentioned JIRA AlarmCallback plugin. First open the
JiraAlarmCallback.java file and let it implement the AlarmCallback interface:

public class JiraAlarmCallback implements AlarmCallback

Your IDE should offer you to create the methods you need to implement:

public void initialize(Configuration configuration) throws AlarmCallbackConfigurationException

This is called once at the very beginning of the lifecycle of this plugin. It is common practive to store the
Configuration as a private member for later access.

public void call(Stream stream, AlertCondition.CheckResult checkResult) throws AlarmCallbackException

This is the actual alarm callback being triggered. Implement your login that creates a JIRA ticket here.

public ConfigurationRequest getRequestedConfiguration()

Plugins can request configurations. The UI in the Graylog web interface is generated from this informa-
tion and the filled out configuration values are passed back to the plugin in initialize(Configuration
configuration).

This is an example configuration request:

final ConfigurationRequest configurationRequest = new ConfigurationRequest();
configurationRequest.addField(new TextField(

"service_key", "Service key", "", "JIRA API token. You can find this token in
→˓your account settings.",

ConfigurationField.Optional.NOT_OPTIONAL)); // required, must be filled out

104 Chapter 14. Plugins

https://www.jetbrains.com/idea/

Graylog Documentation, Release 1.1.6

configurationRequest.addField(new BooleanField(
"use_https", "HTTPs", true,
"Use HTTP for API communication?"));

public String getName()

Return a human readable name of this plugin.

public Map<String, Object> getAttributes()

Return attributes that might be interesting to be shown under the alarm callback in the Graylog web interface. It is
common practice to at least return the used configuration here.

public void checkConfiguration() throws ConfigurationException

Throw a ConfigurationException if the user should have entered missing or invalid configuration parameters.

Registering the plugin

You now have to register your plugin in the JiraAlarmCallbackModule.java file to make
graylog-server load the alarm callback when launching. The reason for the manual registering is that a plu-
gin could consist of multiple plugin types. Think of the generated plugin file as a bundle of multiple plugins.

Register your new plugin using the configure() method:

@Override
protected void configure() {

addAlarmCallback(JiraAlarmCallback.class);
}

Building plugins

Building the plugin is easy because the archetype has created all necessary files and settings for you. Just run mvn
package from the plugin directory:

$ mvn package

This will generate a .jar file in target/ that is the complete plugin file:

$ ls target/jira-alarmcallback-1.0.0-SNAPSHOT.jar
target/jira-alarmcallback-1.0.0-SNAPSHOT.jar

Installing and loading plugins

The only thing you need to do to run the plugin in Graylog is to copy the .jar file to your plugins folder that is con-
figured in your graylog.conf. The default is just plugins/ relative from your graylog-server directory.

Restart graylog-server and the plugin should be available to use from the web interface immediately.

14.4. Building plugins 105

Graylog Documentation, Release 1.1.6

106 Chapter 14. Plugins

CHAPTER 15

External dashboards

There are other frontends that are connecting to the Graylog REST API and display data or information in a special
way.

CLI stream dashboard

This official Graylog dashboard which is developed by us is showing live information of a specific stream in your
terminal. For example it is the perfect companion during a deployment of your platform: Run it next to the deployment
output and show information of a stream that is catching all errors or exceptions on your systems.

107

Graylog Documentation, Release 1.1.6

The CLI stream dashboard documentation is available on GitHub.

Browser stream dashboard

This official Graylog dashboard is showing live information of a specific stream in a web browser. It will display and
automatically reload the most recent messages and alerts of a stream and is perfect to display on large screens in your
office.

108 Chapter 15. External dashboards

https://github.com/Graylog2/cli-dashboard

Graylog Documentation, Release 1.1.6

The browser stream dashboard documentation is available on GitHub.

15.2. Browser stream dashboard 109

https://github.com/Graylog2/graylog2-stream-dashboard

Graylog Documentation, Release 1.1.6

110 Chapter 15. External dashboards

CHAPTER 16

Graylog Marketplace

The Graylog Marketplace is currently in BETA.

The Graylog Marketplace is the central directory of add-ons for Graylog. It contains plugins, content packs, GELF
libraries and more content built by Graylog developers and community members.

111

http://marketplace.graylog.org

Graylog Documentation, Release 1.1.6

GitHub integration

The Marketplace is deeply integrated with GitHub. You sign-in with your GitHub account if you want to submit
content and only have to select an existing repository to list on the Marketplace.

From there on you manage your releases and code changes in GitHub. The Marketplace will automatically update
your content.

There is no need to sign-in if you only want to browse or download content.

General best practices

README content

We kindly ask you to provide an as descriptive as possible README file with your submission. This file will be
displayed on the Marketplace detail page and should provide the following information:

• What is it.

• Why would you want to use it? (Use cases)

• Do you have to register somewhere to get for example an API token?

• How to install and configure it.

• How to use it in a Graylog context.

Take a look at the Splunk plug-in as an example.

The README supports Markdown for formatting. You cannot submit content that does not contain a README file.

License

You cannot submit content that does not contain a LICENSE or COPYING file. We recommend to consult ChooseAL-
icense.com if you are unsure which license to use.

Contributing plug-ins

You created a Graylog plugin and want to list it in the Marketplace? This is great. Here are the simple steps to follow:

1. Create a GitHub repository for your plugin

2. Include a README and a LICENSE file in the repository.

3. Push all your code to the repository.

4. Create a GitHub release and give it the name of the plugin version. For example 0.1. The Marketplace will
always show and link the latest version. You can upload as many release artifacts as you want here. For example
the .jar file together with DEB and RPM files. The Marketplace will link to the detail page of a release for
downloads.

5. Submit the repository to the Marketplace

112 Chapter 16. Graylog Marketplace

https://marketplace.graylog.org/addons/974efcc3-8d78-4847-becd-0f26821d2646
http://daringfireball.net/projects/markdown
http://choosealicense.com
http://choosealicense.com
https://help.github.com/articles/creating-releases/

Graylog Documentation, Release 1.1.6

Contributing content packs

Graylog content packs can be shared on the Marketplace by following these steps:

1. Export a Graylog content pack from the Graylog Web Interface and save the generated JSON in a file called
content_pack.json.

2. Create a GitHub repository for your content pack

3. Include a README and a LICENSE file in the repository.

4. Include the content_pack.json file in the root of your GitHub repository.

5. Submit the repository to the Marketplace

Contributing GELF libraries

A GELF library can be added like this:

1. Create a GitHub repository for your GELF library.

2. Include a README and a LICENSE file in the repository.

3. Describe where to download and how to use the GELF library in the README.

Contributing other content

You want to contribute content that does not really fit into the other categories but describes how to integrate a certain
system or make it send messages to Graylog?

This is how you can do it:

1. Create a GitHub repository for your content

2. Include a README and a LICENSE file in the repository.

3. All content goes into the README.

16.4. Contributing content packs 113

Graylog Documentation, Release 1.1.6

114 Chapter 16. Graylog Marketplace

CHAPTER 17

Frequently asked questions

General

Isn’t Java slow and needs a lot of memory?

This is a concern that we hear from time to time. We are however usually able to prove this assumption wrong. Java
has a bad reputation from slow and laggy desktop/GUI applications that eat a lot of memory. Well written Java code
for server systems is very efficient and does not need a lot of resources.

Give it a try, you might be surprised!

I already tried to use Elasticsearch for log management and it did not work well

Sorry to hear that. The good news: Graylog is working around a lot of the log management specific shortcomings of
Elasticsearch. Don’t get us wrong: Elasticsearch is a great product! It just needs some special handling by our graylog-
server process that you do not get if you are directly writing your logs and reading information from Elasticsearch.
Especially the journalling of Graylog shields Elasticsearch against overloading and failing in weird ways.

What is MongoDB used for?

The MongoDB dependency of Graylog is there to store metadata that is not log data. None of your messages is ever
stored in Graylog but for example user information or stream rules are. This is why you should not expect much
load on MongoDB and thus don’t have to worry too much about scaling it. It will just run aside your graylog-server
processes and take almost no resources in our recommended setup architectures.

There are plans to introduce a database abstraction layer in the future. This will give you the choice to run MongoDB,
MySQL or other databases for storing metadata.

115

Graylog Documentation, Release 1.1.6

It seems like Graylog has no reporting functionality?

That is correct. For now there is no built-in reporting functionality that sends automated reports. You can however use
our REST API to generate and send you own reports. A cron job and the scripting language of your choice should do
the trick.

Message parsing

Does Graylog parse syslog?

Yes, Graylog is able to accept and parse RFC 5424 and RFC 3164 compliant syslog messages and supports TCP
transport with both the octet counting or termination character methods. UDP is also supported and the recommended
way to send log messages in most architectures.

Many devices, especially routers and firewalls, do not send RFC compliant syslog messages. This might result in
wrong or completely failing parsing. In that case you might have to go with a combination of raw/plaintext message
inputs that do not attempt to do any parsing and Extractors.

Rule of thumb is that messages forwarded by rsyslog or syslog-ng are usually parsed flawlessly.

116 Chapter 17. Frequently asked questions

CHAPTER 18

The thinking behind the Graylog architecture and why it matters to you

A short history of Graylog

The Graylog project was started by Lennart Koopmann some time around 2009. Back then the most prominent log
management software vendor issued a quote for a one year license of their product that was so expensive that he
decided to write a log management system himself. Now you might call this a bit over optimistic (I’ll build this in two
weeks, end of quote) but the situation was hopeless: There was basically no other product on the market and especially
no open source alternatives.

The log management market today

Things have changed a bit since 2009. Now there are viable open source projects with serious products and a growing
list of SaaS offerings for log management.

Architectural considerations

Graylog has been successful in providing log management software because it was built for log management from
the beginning. Software that stores and analyzes log data must have a very specific architecture to do it efficiently. It
is more than just a database or a full text search engine because it has to deal with both text data and metrics data on a
time axis. Searches are always bound to a time frame (relative or absolute) and only going back into the past because
future log data has not been written yet. A general purpose database or full text search engine that could also
store and index the private messages of your online platform for search will never be able to effectively manage
your log data. Adding a specialized frontend on top of it makes it look like it could do the job in a good way but is
basically just putting lipstick on the wrong stack.

A log management system has to be constructed of several services that take care of processing, indexing, and data
access. The most important reason is that you need to scale parts of it horizontally with your changing use cases and
usually the different parts of the system have different hardware requirements. All services must be tightly integrated
to allow efficient management and configuration of the system as a whole. A data ingestion or forwarder tool is hard
to tedious to manage if the configuration has to be stored on the client machines and is not possible via for example

117

Graylog Documentation, Release 1.1.6

REST APIs controlled by a simple interface. A system adminstrator needs to be able to log into the web interface of a
log management product and select log files of a remote host (that has a forwarder running) for ingestion into the tool.

You also want to be able to see the health and configuration of all forwarders, data processors and indexers in a
central place because the whole log management stack can easily involve thousands of machines if you include the log
emitting clients into this calculation. You need to be able to see which clients are forwarding log data and which are
not to make sure that you are not missing any important data.

Graylog is coming the closest to the Splunk architecture:

• Graylog was solely built as a log management system from the first line of code. This makes it very efficient
and easy to use.

• The graylog-server component sits in the middle and works around shortcomings of Elasticsearch (a full
text search engine, not a log management system) for log management. It also builds an abstraction layer on
top of it to make data access as easy as possible without having to select indices and write tedious time range
selection filters, etc. - Just submit the search query and Graylog will take care of the rest for you.

• All parts of the system are tightly integrated and many parts speak to each other to make your job easier.

• Like Wordpress makes MySQL a good solution for blogging, Graylog makes Elasticsearch a good solution for
logging. You should never have a system or frontend query Elasticsearch directly for log management so we are
putting graylog-server in front of it.

118 Chapter 18. The thinking behind the Graylog architecture and why it matters to you

Graylog Documentation, Release 1.1.6

Unlimited data collection

Volume based license models are making your job unnecessary hard. Price is a big factor here but it is even worse that
volume based license models make you (or your manager makes you) try to save volume. This means that you will
be finding yourself thinking about which data really needs to be ingested. The big problem is that you do not know
what you might need the data for in the moment you are sending (or not sending) it. We have seen operations teams
during a downtime wishing that they had collected the data of a certain log file that was now not searchable. This is
counter-productive and dangerous. You can be limited by disk space or other resources but never by the license
that somebody bought.

It is also a law of the market that you have to build your volume pricing model on the amount of data that is usually
collected today. The amount of generated data has increased dramatically and vendors are nailed to their pricing
model from 2008. This is why you get quotes that fill you with sadness in today’s world.

Blackboxes

Closed source systems tend to become black boxes that you cannot extend or adapt to fit the needs of your use case.
This is an important thing to consider especially for log management software. The use cases can range from simple
syslog centralization to ultra flexible data bus requirements. A closed source system will always make you depending
on the vendor because there is no way to adapt. As your setup reaches a certain point of flexibility you might hit a wall
earlier than expected.

Consider spending a part of the money you would spend for the wrong license model for developing your own plugins
or integrations.

The future

Graylog is the only open source log management system that will be able to deliver functionality and scaling in a way
that Splunk does. It will be possible to replace Elasticsearch with something that is really suited for log data analysis
without even changing the public facing APIs.

18.3. The future 119

Graylog Documentation, Release 1.1.6

120 Chapter 18. The thinking behind the Graylog architecture and why it matters to you

CHAPTER 19

Changelog

Graylog 1.1.6

Released: 2015-08-06

https://www.graylog.org/graylog-1-1-6-released/

• Fix edge case in SyslogOctetCountFrameDecoder which caused the Syslog TCP input to reset connec-
tions (Graylog2/graylog2-server#1105, Graylog2/graylog2-server#1339)

• Properly log errors in the Netty channel pipeline (Graylog2/graylog2-server#1340)

• Prevent creation of invalid alert conditions (Graylog2/graylog2-server#1332)

• Upgrade to Elasticsearch 1.6.2

Graylog 1.1.5

Released: 2015-07-27

https://www.graylog.org/graylog-1-1-5-released/

• Improve handling of exceptions in the JournallingMessageHandler (Graylog2/graylog2-server#1286)

• Upgrade to Elasticsearch 1.6.1 (Graylog2/graylog2-server#1312)

• Remove hard-coded limit for UDP receive buffer size (Graylog2/graylog2-server#1290)

• Ensure that elasticsearch_index_prefix is lowercase (commit 2173225)

• Add configuration option for time zone to Date converter (Graylog2/graylog2-server#1320)

• Fix NPE if the disk journal is disabled on a node (Graylog2/graylog2-web-interface#1520)

• Statistic and Chart error: Adding time zone offset caused overflow (Graylog2/graylog2-server#1257)

• Ignore stream alerts and throughput on serialize (Graylog2/graylog2-server#1309)

121

https://www.graylog.org/graylog-1-1-6-released/
https://github.com/Graylog2/graylog2-server/issues/1105
https://github.com/Graylog2/graylog2-server/issues/1339
https://github.com/Graylog2/graylog2-server/issues/1340
https://github.com/Graylog2/graylog2-server/issues/1332
https://www.elastic.co/blog/elasticsearch-1-7-1-and-1-6-2-released
https://www.graylog.org/graylog-1-1-5-released/
https://github.com/Graylog2/graylog2-server/pull/1286
https://github.com/Graylog2/graylog2-server/pull/1312
https://github.com/Graylog2/graylog2-server/pull/1290
https://github.com/Graylog2/graylog2-server/commit/21732256ac36f9567be1605f533ebbba7f363468
https://github.com/Graylog2/graylog2-server/issues/1320
https://github.com/Graylog2/graylog2-web-interface/pull/1520
https://github.com/Graylog2/graylog2-server/issues/1257
https://github.com/Graylog2/graylog2-server/pull/1309

Graylog Documentation, Release 1.1.6

• Fix dynamic keyword time-ranges for dashboard widgets created from content packs (Graylog2/graylog2-
server#1308)

• Upgraded Anonymous Usage Statistics plugin to version 1.1.1

Graylog 1.1.4

Released: 2015-06-30

https://www.graylog.org/graylog-v1-1-4-is-now-available/

• Make heartbeat timeout option for AmqpTransport optional. Graylog2/graylog2-server#1010

• Export as CSV on stream fails with “Invalid range type provided.” Graylog2/graylog2-web-interface#1504

Graylog 1.1.3

Released: 2015-06-19

https://www.graylog.org/graylog-v1-1-3-is-now-available/

• Log error message early if there is a MongoDB connection error. Graylog2/graylog2-server#1249

• Fixed field content value alert condition. Graylog2/graylog2-server#1245

• Extend warning about SO_RCVBUF size to UDP inputs. Graylog2/graylog2-server#1243

• Scroll on button dropdowns. Graylog2/graylog2-web-interface#1477

• Normalize graph widget numbers before drawing them. Graylog2/graylog2-web-interface#1479

• Fix highlight result checkbox position on old Firefox. Graylog2/graylog2-web-interface#1440

• Unescape terms added to search bar. Graylog2/graylog2-web-interface#1484

• Load another message in edit extractor page not working. Graylog2/graylog2-web-interface#1488

• Reader users aren’t able to export search results as CSV. Graylog2/graylog2-web-interface#1492

• List of streams not loaded on message details page. Graylog2/graylog2-web-interface#1496

Graylog 1.1.2

Released: 2015-06-10

https://www.graylog.org/graylog-v1-1-2-is-now-available/

• Get rid of NoSuchElementException if index alias doesn’t exist. Graylog2/graylog2-server#1218

• Make Alarm Callbacks API compatible to Graylog 1.0.x again. Graylog2/graylog2-server#1221,
Graylog2/graylog2-server#1222, Graylog2/graylog2-server#1224

• Fixed issues with natural language parser for keyword time range. Graylog2/graylog2-server#1226

• Unable to write Graylog metrics to MongoDB Graylog2/graylog2-server#1228

• Unable to delete user. Graylog2/graylog2-server#1209

• Unable to unpause streams, dispite editing permissions. Graylog2/graylog2-web-interface#1456

122 Chapter 19. Changelog

https://github.com/Graylog2/graylog2-server/pull/1308
https://github.com/Graylog2/graylog2-server/pull/1308
https://www.graylog.org/graylog-v1-1-4-is-now-available/
https://github.com/Graylog2/graylog2-server/issues/1010
https://github.com/Graylog2/graylog2-web-interface/issues/1504
https://www.graylog.org/graylog-v1-1-3-is-now-available/
https://github.com/Graylog2/graylog2-server/issues/1249
https://github.com/Graylog2/graylog2-server/issues/1245
https://github.com/Graylog2/graylog2-server/issues/1243
https://github.com/Graylog2/graylog2-web-interface/issues/1477
https://github.com/Graylog2/graylog2-web-interface/issues/1479
https://github.com/Graylog2/graylog2-web-interface/issues/1440
https://github.com/Graylog2/graylog2-web-interface/issues/1484
https://github.com/Graylog2/graylog2-web-interface/issues/1488
https://github.com/Graylog2/graylog2-web-interface/issues/1492
https://github.com/Graylog2/graylog2-web-interface/issues/1496
https://www.graylog.org/graylog-v1-1-2-is-now-available/
https://github.com/Graylog2/graylog2-server/issues/1218
https://github.com/Graylog2/graylog2-server/issues/1221
https://github.com/Graylog2/graylog2-server/issues/1222
https://github.com/Graylog2/graylog2-server/issues/1224
https://github.com/Graylog2/graylog2-server/issues/1226
https://github.com/Graylog2/graylog2-server/issues/1228
https://github.com/Graylog2/graylog2-server/issues/1209
https://github.com/Graylog2/graylog2-web-interface/issues/1456

Graylog Documentation, Release 1.1.6

• Choose quick values widget size dynamically. Graylog2/graylog2-web-interface#1422

• Default field sort order is not guaranteed after reload. Graylog2/graylog2-web-interface#1436

• Toggling all fields in search list throws error and breaks pagination. Graylog2/graylog2-web-interface#1434

• Improve multi-line log messages support. Graylog2/graylog2-web-interface#612

• NPE when clicking a message from a deleted input on a stopped node. Graylog2/graylog2-web-interface#1444

• Auto created search syntax must use quotes for values with whitespaces in them. Graylog2/graylog2-web-
interface#1448

• Quick Values doesn’t update for new field. Graylog2/graylog2-web-interface#1438

• New Quick Values list too large. Graylog2/graylog2-web-interface#1442

• Unloading referenced alarm callback plugin breaks alarm callback listing. Graylog2/graylog2-web-
interface#1450

• Add to search button doesn’t work as expected for “level” field. Graylog2/graylog2-web-interface#1453

• Treat “*” query as empty query. Graylog2/graylog2-web-interface#1420

• Improve title overflow on widgets. Graylog2/graylog2-web-interface#1430

• Convert NaN to 0 on histograms. Graylog2/graylog2-web-interface#1417

• “<>” values in fields are unescaped and don’t display in Quick Values. Graylog2/graylog2-web-
interface#1455

• New quickvalues are not showing number of terms. Graylog2/graylog2-web-interface#1411

• Default index for split & index extractor results in an error. Graylog2/graylog2-web-interface#1464

• Improve behaviour when field graph fails to load. Graylog2/graylog2-web-interface#1276

• Unable to unpause streams, dispite editing permissions. Graylog2/graylog2-web-interface#1456

• Wrong initial size of quick values pie chart. Graylog2/graylog2-web-interface#1469

• Problems refreshing data on quick values pie chart. Graylog2/graylog2-web-interface#1470

• Ignore streams with no permissions on message details. Graylog2/graylog2-web-interface#1472

Graylog 1.1.1

Released: 2015-06-05

https://www.graylog.org/graylog-v1-1-1-is-now-available/

• Fix problem with missing alarmcallbacks. Graylog2/graylog2-server#1214

• Add additional newline between messages to alert email. Graylog2/graylog2-server#1216

• Fix incorrect index range calculation. Graylog2/graylog2-server#1217, Graylog2/graylog2-web-interface#1266

• Fix sidebar auto-height on old Firefox versions. Graylog2/graylog2-web-interface#1410

• Fix “create one now” link on stream list page. Graylog2/graylog2-web-interface#1424

• Do not update StreamThroughput when unmounted. Graylog2/graylog2-web-interface#1428

• Fix position of alert annotations in search result histogram. Graylog2/graylog2-web-interface#1421

• Fix NPE when searching. Graylog2/graylog2-web-interface#1212

19.6. Graylog 1.1.1 123

https://github.com/Graylog2/graylog2-web-interface/issues/1422
https://github.com/Graylog2/graylog2-web-interface/issues/1436
https://github.com/Graylog2/graylog2-web-interface/issues/1434
https://github.com/Graylog2/graylog2-web-interface/issues/612
https://github.com/Graylog2/graylog2-web-interface/issues/1444
https://github.com/Graylog2/graylog2-web-interface/issues/1448
https://github.com/Graylog2/graylog2-web-interface/issues/1448
https://github.com/Graylog2/graylog2-web-interface/issues/1438
https://github.com/Graylog2/graylog2-web-interface/issues/1442
https://github.com/Graylog2/graylog2-web-interface/issues/1450
https://github.com/Graylog2/graylog2-web-interface/issues/1450
https://github.com/Graylog2/graylog2-web-interface/issues/1453
https://github.com/Graylog2/graylog2-web-interface/issues/1420
https://github.com/Graylog2/graylog2-web-interface/issues/1430
https://github.com/Graylog2/graylog2-web-interface/issues/1417
https://github.com/Graylog2/graylog2-web-interface/issues/1455
https://github.com/Graylog2/graylog2-web-interface/issues/1455
https://github.com/Graylog2/graylog2-web-interface/issues/1411
https://github.com/Graylog2/graylog2-web-interface/issues/1464
https://github.com/Graylog2/graylog2-web-interface/issues/1276
https://github.com/Graylog2/graylog2-web-interface/issues/1456
https://github.com/Graylog2/graylog2-web-interface/issues/1469
https://github.com/Graylog2/graylog2-web-interface/issues/1470
https://github.com/Graylog2/graylog2-web-interface/issues/1472
https://www.graylog.org/graylog-v1-1-1-is-now-available/
https://github.com/Graylog2/graylog2-server/issues/1214
https://github.com/Graylog2/graylog2-server/issues/1216
https://github.com/Graylog2/graylog2-server/issues/1217
https://github.com/Graylog2/graylog2-web-interface/issues/1266
https://github.com/Graylog2/graylog2-web-interface/issues/1410
https://github.com/Graylog2/graylog2-web-interface/issues/1424
https://github.com/Graylog2/graylog2-web-interface/issues/1428
https://github.com/Graylog2/graylog2-web-interface/issues/1421
https://github.com/Graylog2/graylog2-web-interface/issues/1212

Graylog Documentation, Release 1.1.6

• Hide unlock dashboard link for reader users. Graylog2/graylog2-web-interface#1429

• Open radio documentation link on a new window. Graylog2/graylog2-web-interface#1427

• Use radio node page on message details. Graylog2/graylog2-web-interface#1423

Graylog 1.1.0

Released: 2015-06-04

https://www.graylog.org/graylog-1-1-is-now-generally-available/

• Properly set node_id on message input Graylog2/graylog2-server#1210

• Fixed handling of booleans in configuration forms in the web interface

• Various design fixes in the web interface

Graylog 1.1.0-rc.3

Released: 2015-06-02

https://www.graylog.org/graylog-v1-1-rc3-is-now-available/

• Unbreak server startup with collector thresholds set. Graylog2/graylog2-server#1194

• Adding verbal alert description to alert email templates and subject line defaults. Graylog2/graylog2-
server#1158

• Fix message backlog in default body template in FormattedEmailAlertSender. Graylog2/graylog2-server#1163

• Make RawMessageEvent’s fields volatile to guard against cross-cpu visibility issues. Graylog2/graylog2-
server#1207

• Set default for “disable_index_range_calculation” to “true”.

• Passing in value to text area fields in configuration forms. Graylog2/graylog2-web-interface#1340

• Stream list has no loading spinner. Graylog2/graylog2-web-interface#1309

• Showing a helpful notification when there are no active/inactive collectors. Graylog2/graylog2-web-
interface#1302

• Improve behavior when field graphs are stacked. Graylog2/graylog2-web-interface#1348

• Keep new lines added by users on alert callbacks. Graylog2/graylog2-web-interface#1270

• Fix duplicate metrics reporting if two components subscribed to the same metric on the same page.
Graylog2/graylog2-server#1199

• Make sidebar visible on small screens. Graylog2/graylog2-web-interface#1390

• Showing warning and disabling edit button for output if plugin is missing. Graylog2/graylog2-web-
interface#1185

• Using formatted fields in old message loader. Graylog2/graylog2-web-interface#1393

• Several styling and UX improvements

124 Chapter 19. Changelog

https://github.com/Graylog2/graylog2-web-interface/issues/1429
https://github.com/Graylog2/graylog2-web-interface/issues/1427
https://github.com/Graylog2/graylog2-web-interface/issues/1423
https://www.graylog.org/graylog-1-1-is-now-generally-available/
https://github.com/Graylog2/graylog2-server/issues/1210
https://www.graylog.org/graylog-v1-1-rc3-is-now-available/
https://github.com/Graylog2/graylog2-server/issues/1194
https://github.com/Graylog2/graylog2-server/issues/1158
https://github.com/Graylog2/graylog2-server/issues/1158
https://github.com/Graylog2/graylog2-server/issues/1163
https://github.com/Graylog2/graylog2-server/issues/1207
https://github.com/Graylog2/graylog2-server/issues/1207
https://github.com/Graylog2/graylog2-web-interface/issues/1340
https://github.com/Graylog2/graylog2-web-interface/issues/1309
https://github.com/Graylog2/graylog2-web-interface/issues/1302
https://github.com/Graylog2/graylog2-web-interface/issues/1302
https://github.com/Graylog2/graylog2-web-interface/issues/1348
https://github.com/Graylog2/graylog2-web-interface/issues/1270
https://github.com/Graylog2/graylog2-server/issues/1199
https://github.com/Graylog2/graylog2-web-interface/issues/1390
https://github.com/Graylog2/graylog2-web-interface/issues/1185
https://github.com/Graylog2/graylog2-web-interface/issues/1185
https://github.com/Graylog2/graylog2-web-interface/issues/1393

Graylog Documentation, Release 1.1.6

Graylog 1.1.0-rc.1

Released: 2015-05-27

https://www.graylog.org/graylog-v1-1-rc1-is-now-available/

• Unable to send email alerts. Graylog2/graylog2-web-interface#1346

• “Show messages from this collector view” displays no messages. Graylog2/graylog2-web-interface#1334

• Exception error in search page when using escaped characters. Graylog2/graylog2-web-interface#1356

• Wrong timestamp on stream rule editor. Graylog2/graylog2-web-interface#1328

• Quickvalue values are not linked to update search query. Graylog2/graylog2-web-interface#1296

• Stream list has no loading spinner. Graylog2/graylog2-web-interface#1309

• Collector list with only inactive collectors is confusing. Graylog2/graylog2-web-interface#1302

• Update sockjs-client to 1.0.0. Graylog2/graylog2-web-interface#1344

• Scroll to search bar when new query term is added. Graylog2/graylog2-web-interface#1284

• Scroll to quick values if not visible. Graylog2/graylog2-web-interface#1284

• Scroll to newly created field graphs. Graylog2/graylog2-web-interface#1284

• Problems with websockets and even xhr streaming. Graylog2/graylog2-web-interface#1344,
Graylog2/graylog2-web-interface#1353, Graylog2/graylog2-web-interface#1338, Graylog2/graylog2-web-
interface#1322

• Add to search bar not working on sources tab. Graylog2/graylog2-web-interface#1350

• Make field graphs work with streams. Graylog2/graylog2-web-interface#1352

• Improved page design on outputs page. Graylog2/graylog2-web-interface#1236

• Set startpage button missing for dashboards. Graylog2/graylog2-web-interface#1345

• Generating chart for http response code is broken. Graylog2/graylog2-web-interface#1358

Graylog 1.1.0-beta.3

Released: 2015-05-27

https://www.graylog.org/graylog-1-1-beta-3-is-now-available/

• Kafka inputs now support syslog, GELF and raw messages Graylog2/graylog2-server#322

• Configurable timezone for the flexdate converter in extractors. Graylog2/graylog2-server#1166

• Allow decimal values for greater/smaller stream rules. Graylog2/graylog2-server#1101

• New configuration file option to control the default widget cache time. Graylog2/graylog2-server#1170

• Expose heartbeat configuration for AMQP inputs. Graylog2/graylog2-server#1010

• New alert condition to alert on field content. Graylog2/graylog2-server#537

• Add <code>-Dwebsockets.enabled=false</code> option for the web interface to disable websockets.
Graylog2/graylog2-web-interface#1322

• Clicking the Graylog logo redirects to the custom startpage now. Graylog2/graylog2-web-interface#1315

• Improved reset and filter feature in sources tab. Graylog2/graylog2-web-interface#1337

19.9. Graylog 1.1.0-rc.1 125

https://www.graylog.org/graylog-v1-1-rc1-is-now-available/
https://github.com/Graylog2/graylog2-web-interface/issues/1346
https://github.com/Graylog2/graylog2-web-interface/issues/1334
https://github.com/Graylog2/graylog2-web-interface/issues/1356
https://github.com/Graylog2/graylog2-web-interface/issues/1328
https://github.com/Graylog2/graylog2-web-interface/issues/1296
https://github.com/Graylog2/graylog2-web-interface/issues/1309
https://github.com/Graylog2/graylog2-web-interface/issues/1302
https://github.com/Graylog2/graylog2-web-interface/issues/1344
https://github.com/Graylog2/graylog2-web-interface/issues/1284
https://github.com/Graylog2/graylog2-web-interface/issues/1284
https://github.com/Graylog2/graylog2-web-interface/issues/1284
https://github.com/Graylog2/graylog2-web-interface/issues/1344
https://github.com/Graylog2/graylog2-web-interface/issues/1353
https://github.com/Graylog2/graylog2-web-interface/issues/1338
https://github.com/Graylog2/graylog2-web-interface/issues/1322
https://github.com/Graylog2/graylog2-web-interface/issues/1322
https://github.com/Graylog2/graylog2-web-interface/issues/1350
https://github.com/Graylog2/graylog2-web-interface/issues/1352
https://github.com/Graylog2/graylog2-web-interface/issues/1236
https://github.com/Graylog2/graylog2-web-interface/issues/1345
https://github.com/Graylog2/graylog2-web-interface/issues/1358
https://www.graylog.org/graylog-1-1-beta-3-is-now-available/
https://github.com/Graylog2/graylog2-server/issues/322
https://github.com/Graylog2/graylog2-server/issues/1166
https://github.com/Graylog2/graylog2-server/issues/1101
https://github.com/Graylog2/graylog2-server/issues/1170
https://github.com/Graylog2/graylog2-server/issues/1010
https://github.com/Graylog2/graylog2-server/issues/537
https://github.com/Graylog2/graylog2-web-interface/issues/1322
https://github.com/Graylog2/graylog2-web-interface/issues/1315
https://github.com/Graylog2/graylog2-web-interface/issues/1337

Graylog Documentation, Release 1.1.6

• Fixed issue with stopping Kafka based inputs. Graylog2/graylog2-server#1171

• System throughput resource was always returning 0. Graylog2/graylog2-web-interface#1313

• MongoDB configuration problem with replica sets. Graylog2/graylog2-server#1173

• Syslog parser did not strip empty structured data fields. Graylog2/graylog2-server#1161

• Input metrics did not update after input has been stopped and started again. Graylog2/graylog2-server#1187

• NullPointerException with existing inputs in database fixed. Graylog2/graylog2-web-interface#1312

• Improved browser input validation for several browsers. Graylog2/graylog2-web-interface#1318

• Grok pattern upload did not work correctly. Graylog2/graylog2-web-interface#1321

• Internet Explorer 9 fixes. Graylog2/graylog2-web-interface#1319, Graylog2/graylog2-web-interface#1320

• Quick values feature did not work with reader users. Graylog2/graylog2-server#1169

• Replay link for keyword widgets was broken. Graylog2/graylog2-web-interface#1323

• Provide visual feedback when expanding message details. Graylog2/graylog2-web-interface#1283

• Allow filtering of saved searches again. Graylog2/graylog2-web-interface#1277

• Add back “Show details” link for global input metrics. Graylog2/graylog2-server#1168

• Provide visual feedback when dashboard widgets are loading. Graylog2/graylog2-web-interface#1324

• Restore preview for keyword time range selector. Graylog2/graylog2-web-interface#1280

• Fixed issue where widgets loading data looked empty. Graylog2/graylog2-web-interface#1324

Graylog 1.1.0-beta.2

Released: 2015-05-20

https://www.graylog.org/graylog-1-1-beta-is-now-available/

• CSV output streaming support including full text message

• Simplified MongoDB configuration with URI support

• Improved tokenizer for extractors

• Configurable UDP buffer size for incoming messages

• Enhanced Grok support with type conversions (integers, doubles and dates)

• Elasticsearch 1.5.2 support

• Added support for integrated Log Collector

• Search auto-complete

• Manual widget resize

• Auto resize of widgets based on screen size

• Faster search results

• Moved search filter for usability

• Updated several icons to text boxes for usability

• Search highlight toggle

126 Chapter 19. Changelog

https://github.com/Graylog2/graylog2-server/issues/1171
https://github.com/Graylog2/graylog2-web-interface/issues/1313
https://github.com/Graylog2/graylog2-server/issues/1173
https://github.com/Graylog2/graylog2-server/issues/1161
https://github.com/Graylog2/graylog2-server/issues/1187
https://github.com/Graylog2/graylog2-web-interface/issues/1312
https://github.com/Graylog2/graylog2-web-interface/issues/1318
https://github.com/Graylog2/graylog2-web-interface/issues/1321
https://github.com/Graylog2/graylog2-web-interface/issues/1319
https://github.com/Graylog2/graylog2-web-interface/issues/1320
https://github.com/Graylog2/graylog2-server/issues/1169
https://github.com/Graylog2/graylog2-web-interface/issues/1323
https://github.com/Graylog2/graylog2-web-interface/issues/1283
https://github.com/Graylog2/graylog2-web-interface/issues/1277
https://github.com/Graylog2/graylog2-server/issues/1168
https://github.com/Graylog2/graylog2-web-interface/issues/1324
https://github.com/Graylog2/graylog2-web-interface/issues/1280
https://github.com/Graylog2/graylog2-web-interface/issues/1324
https://www.graylog.org/graylog-1-1-beta-is-now-available/

Graylog Documentation, Release 1.1.6

• Pie charts (Stacked charts are coming too!)

• Improved stream management

• Output plugin and Alarm callback edit support

• Dashboard widget search edit

• Dashboard widget direct search button

• Dashboard background update support for better performance

• Log collector status UI

Graylog 1.0.2

Released: 2015-04-28

https://www.graylog.org/graylog-v1-0-2-has-been-released/

• Regular expression and Grok test failed when example message is a JSON document or contains special char-
acters (Graylog2/graylog2-web-interface#1190, Graylog2/graylog2-web-interface#1195)

• “Show message terms” was broken (Graylog2/graylog2-web-interface#1168)

• Showing message indices was broken (Graylog2/graylog2-web-interface#1211)

• Fixed typo in SetIndexReadOnlyJob (Graylog2/graylog2-web-interface#1206)

• Consistent error messages when trying to create graphs from non-numeric values (Graylog2/graylog2-web-
interface#1210)

• Fix message about too few file descriptors for Elasticsearch when number of file descriptors is unlimited
(Graylog2/graylog2-web-interface#1220)

• Deleting output globally which was assigned to multiple streams left stale references (Graylog2/graylog2-
server#1113)

• Fixed problem with sending alert emails (Graylog2/graylog2-server#1086)

• TokenizerConverter can now handle mixed quoted and un-quoted k/v pairs (Graylog2/graylog2-server#1083)

Graylog 1.0.1

Released: 2015-03-16

https://www.graylog.org/graylog-v1-0-1-has-been-released/

• Properly log stack traces (Graylog2/graylog2-server#970)

• Update REST API browser to new Graylog logo

• Avoid spamming the logs if the original input of a message in the disk journal can’t be loaded
(Graylog2/graylog2-server#1005)

• Allows reader users to see the journal status (Graylog2/graylog2-server#1009)

• Compatibility with MongoDB 3.0 and Wired Tiger storage engine (Graylog2/graylog2-server#1024)

• Respect rest_transport_uri when generating entity URLs in REST API (Graylog2/graylog2-
server#1020)

• Properly map NodeNotFoundException (Graylog2/graylog2-web-interface#1137)

19.12. Graylog 1.0.2 127

https://www.graylog.org/graylog-v1-0-2-has-been-released/
https://github.com/Graylog2/graylog2-web-interface/issues/1190
https://github.com/Graylog2/graylog2-web-interface/issues/1195
https://github.com/Graylog2/graylog2-web-interface/issues/1168
https://github.com/Graylog2/graylog2-web-interface/issues/1211
https://github.com/Graylog2/graylog2-web-interface/issues/1206
https://github.com/Graylog2/graylog2-web-interface/issues/1210
https://github.com/Graylog2/graylog2-web-interface/issues/1210
https://github.com/Graylog2/graylog2-web-interface/issues/1220
https://github.com/Graylog2/graylog2-server/issues/1113
https://github.com/Graylog2/graylog2-server/issues/1113
https://github.com/Graylog2/graylog2-server/issues/1086
https://github.com/Graylog2/graylog2-server/issues/1083
https://www.graylog.org/graylog-v1-0-1-has-been-released/
https://github.com/Graylog2/graylog2-server/issues/970
https://github.com/Graylog2/graylog2-server/issues/1005
https://github.com/Graylog2/graylog2-server/issues/1009
https://github.com/Graylog2/graylog2-server/issues/1024
https://github.com/Graylog2/graylog2-server/issues/1020
https://github.com/Graylog2/graylog2-server/issues/1020
https://github.com/Graylog2/graylog2-web-interface/issues/1137

Graylog Documentation, Release 1.1.6

• Allow replacing all existing Grok patterns on bulk import (Graylog2/graylog2-web-interface#1150)

• Configuration option for discarding messages on error in AMQP inputs (Graylog2/graylog2-server#1018)

• Configuration option of maximum HTTP chunk size for HTTP-based inputs (Graylog2/graylog2-server#1011)

• Clone alarm callbacks when cloning a stream (Graylog2/graylog2-server#990)

• Add hasField() and getField() methods to MessageSummary class (Graylog2/graylog2-server#923)

• Add per input parse time metrics (Graylog2/graylog2-web-interface#1106)

• Allow the use of https://logging.apache.org/log4j/extras/ log4j-extras classes in log4j configuration
(Graylog2/graylog2-server#1042)

• Fix updating of input statistics for Radio nodes (Graylog2/graylog2-web-interface#1022)

• Emit proper error message when a regular expression in an Extractor doesn’t match example message
(Graylog2/graylog2-web-interface#1157)

• Add additional information to system jobs (Graylog2/graylog2-server#920)

• Fix false positive message on LDAP login test (Graylog2/graylog2-web-interface#1138)

• Calculate saved search resolution dynamically (Graylog2/graylog2-web-interface#943)

• Only enable LDAP test buttons when data is present (Graylog2/graylog2-web-interface#1097)

• Load more than 1 message on Extractor form (Graylog2/graylog2-web-interface#1105)

• Fix NPE when listing alarm callback using non-existent plugin (Graylog2/graylog2-web-interface#1152)

• Redirect to nodes overview when node is not found (Graylog2/graylog2-web-interface#1137)

• Fix documentation links to integrations and data sources (Graylog2/graylog2-web-interface#1136)

• Prevent accidental indexing of web interface by web crawlers (Graylog2/graylog2-web-interface#1151)

• Validate grok pattern name on the client to avoid duplicate names (Graylog2/graylog2-server#937)

• Add message journal usage to nodes overview page (Graylog2/graylog2-web-interface#1083)

• Properly format numbers according to locale (Graylog2/graylog2-web-interface#1128, Graylog2/graylog2-web-
interface#1129)

Graylog 1.0.0

Released: 2015-02-19

https://www.graylog.org/announcing-graylog-v1-0-ga/

• No changes since Graylog 1.0.0-rc.4

Graylog 1.0.0-rc.4

Released: 2015-02-13

https://www.graylog.org/graylog-v1-0-rc-4-has-been-released/

• Default configuration file locations have changed. Graylog2/graylog2-server#950

• Improved error handling on search errors. Graylog2/graylog2-server#954

128 Chapter 19. Changelog

https://github.com/Graylog2/graylog2-web-interface/pull/1150
https://github.com/Graylog2/graylog2-server/issues/1018
https://github.com/Graylog2/graylog2-server/issues/1011
https://github.com/Graylog2/graylog2-server/issues/990
https://github.com/Graylog2/graylog2-server/issues/923
https://github.com/Graylog2/graylog2-web-interface/issues/1106
https://logging.apache.org/log4j/extras/
https://github.com/Graylog2/graylog2-server/issues/1042
https://github.com/Graylog2/graylog2-web-interface/issues/1122
https://github.com/Graylog2/graylog2-web-interface/issues/1157
https://github.com/Graylog2/graylog2-server/issues/920
https://github.com/Graylog2/graylog2-web-interface/issues/1138
https://github.com/Graylog2/graylog2-web-interface/issues/943
https://github.com/Graylog2/graylog2-web-interface/issues/1097
https://github.com/Graylog2/graylog2-web-interface/issues/1105
https://github.com/Graylog2/graylog2-web-interface/issues/1152
https://github.com/Graylog2/graylog2-web-interface/issues/1137
https://github.com/Graylog2/graylog2-web-interface/issues/1136
https://github.com/Graylog2/graylog2-web-interface/issues/1151
https://github.com/Graylog2/graylog2-server/issues/937
https://github.com/Graylog2/graylog2-web-interface/issues/1083
https://github.com/Graylog2/graylog2-web-interface/issues/1128
https://github.com/Graylog2/graylog2-web-interface/issues/1129
https://github.com/Graylog2/graylog2-web-interface/issues/1129
https://www.graylog.org/announcing-graylog-v1-0-ga/
https://www.graylog.org/graylog-v1-0-rc-4-has-been-released/
https://github.com/Graylog2/graylog2-server/pull/950
https://github.com/Graylog2/graylog2-server/pull/954

Graylog Documentation, Release 1.1.6

• Dynamically update dashboard widgets with keyword range. Graylog2/graylog2-server#956,
Graylog2/graylog2-web-interface#958

• Prevent duplicate loading of plugins. Graylog2/graylog2-server#948

• Fixed password handling when editing inputs. Graylog2/graylog2-web-interface#1103

• Fixed issues getting Elasticsearch cluster health. Graylog2/graylog2-server#953

• Better error handling for extractor imports. Graylog2/graylog2-server#942

• Fixed structured syslog parsing of keys containing special characters. Graylog2/graylog2-server#845

• Improved layout on Grok patterns page. Graylog2/graylog2-web-interface#1109

• Improved formatting large numbers. Graylog2/graylog2-web-interface#1111

• New Graylog logo.

Graylog 1.0.0-rc.3

Released: 2015-02-05

https://www.graylog.org/graylog-v1-0-rc-3-has-been-released/

• Fixed compatibility with MongoDB version 2.2. Graylog2/graylog2-server#941

• Fixed performance regression in process buffer handling. Graylog2/graylog2-server#944

• Fixed data type for the max_size_per_index config option value. Graylog2/graylog2-web-interface#1100

• Fixed problem with indexer error page. Graylog2/graylog2-web-interface#1102

Graylog 1.0.0-rc.2

Released: 2015-02-04

https://www.graylog.org/graylog-v1-0-rc-2-has-been-released/

• Better Windows compatibility. Graylog2/graylog2-server#930

• Added helper methods for the plugin API to simplify plugin development.

• Fixed problem with input removal on radio nodes. Graylog2/graylog2-server#932

• Improved buffer information for input, process and output buffers. Graylog2/graylog2-web-interface#1096

• Fixed API return value incompatibility regarding node objects. Graylog2/graylog2-server#933

• Fixed reloading of LDAP settings. Graylog2/graylog2-server#934

• Fixed ordering of message input state labels. Graylog2/graylog2-web-interface#1094

• Improved error messages for journal related errors. Graylog2/graylog2-server#931

• Fixed browser compatibility for stream rules form. Graylog2/graylog2-web-interface#1095

• Improved grok pattern management. Graylog2/graylog2-web-interface#1099, Graylog2/graylog2-web-
interface#1098

19.16. Graylog 1.0.0-rc.3 129

https://github.com/Graylog2/graylog2-server/pull/956
https://github.com/Graylog2/graylog2-web-interface/issues/958
https://github.com/Graylog2/graylog2-server/pull/948
https://github.com/Graylog2/graylog2-web-interface/issues/1103
https://github.com/Graylog2/graylog2-server/issues/953
https://github.com/Graylog2/graylog2-server/issues/942
https://github.com/Graylog2/graylog2-server/issues/845
https://github.com/Graylog2/graylog2-web-interface/issues/1109
https://github.com/Graylog2/graylog2-web-interface/issues/1111
https://www.graylog.org/graylog-v1-0-rc-3-has-been-released/
https://github.com/Graylog2/graylog2-server/issues/941
https://github.com/Graylog2/graylog2-server/issues/944
https://github.com/Graylog2/graylog2-web-interface/issues/1100
https://github.com/Graylog2/graylog2-web-interface/issues/1102
https://www.graylog.org/graylog-v1-0-rc-2-has-been-released/
https://github.com/Graylog2/graylog2-server/issues/930
https://github.com/Graylog2/graylog2-server/issues/932
https://github.com/Graylog2/graylog2-web-interface/issues/1096
https://github.com/Graylog2/graylog2-server/issues/933
https://github.com/Graylog2/graylog2-server/issues/934
https://github.com/Graylog2/graylog2-web-interface/issues/1094
https://github.com/Graylog2/graylog2-server/issues/931
https://github.com/Graylog2/graylog2-web-interface/issues/1095
https://github.com/Graylog2/graylog2-web-interface/issues/1099
https://github.com/Graylog2/graylog2-web-interface/issues/1098
https://github.com/Graylog2/graylog2-web-interface/issues/1098

Graylog Documentation, Release 1.1.6

Graylog 1.0.0-rc.1

Released: 2015-01-28

https://www.graylog.org/graylog-v1-0-rc-1-has-been-released/

• Cleaned up internal metrics when input is terminating. Graylog2/graylog2-server#915

• Added Telemetry plugin options to example graylog.conf. Graylog2/graylog2-server#914

• Fixed problems with user permissions on streams. Graylog2/graylog2-web-interface#1058

• Added information about different rotation strategies to REST API. Graylog2/graylog2-server#913

• Added better error messages for failing inputs. Graylog2/graylog2-web-interface#1056

• Fixed problem with JVM options in bin/radioctl script. Graylog2/graylog2-server#918

• Fixed issue with updating input configuration. Graylog2/graylog2-server#919

• Fixed password updating for reader users by the admin. Graylog2/graylog2-web-interface#1075

• Enabled the message_journal_enabled config option by default. Graylog2/graylog2-server#924

• Add REST API endpoint to list reopened indices. Graylog2/graylog2-web-interface#1072

• Fixed problem with GELF stream output. Graylog2/graylog2-server#921

• Show an error message on the indices page if the Elasticsearch cluster is not available. Graylog2/graylog2-web-
interface#1070

• Fixed a problem with stopping inputs. Graylog2/graylog2-server#926

• Changed output configuration display to mask passwords. Graylog2/graylog2-web-interface#1066

• Disabled message journal on radio nodes. Graylog2/graylog2-server#927

• Create new message representation format for search results in alarm callback messages. Graylog2/graylog2-
server#923

• Fixed stream router to update the stream engine if a stream has been changed. Graylog2/graylog2-server#922

• Fixed focus problem in stream rule modal windows. Graylog2/graylog2-web-interface#1063

• Do not show new dashboard link for reader users. Graylog2/graylog2-web-interface#1057

• Do not show stream output menu for reader users. Graylog2/graylog2-web-interface#1059

• Do not show user forms of other users for reader users. Graylog2/graylog2-web-interface#1064

• Do not show permission settings in the user profile for reader users. Graylog2/graylog2-web-interface#1055

• Fixed extractor edit form with no messages available. Graylog2/graylog2-web-interface#1061

• Fixed problem with node details page and JVM locale settings. Graylog2/graylog2-web-interface#1062

• Improved page layout for Grok patterns.

• Improved layout for the message journal information. Graylog2/graylog2-web-interface#1084,
Graylog2/graylog2-web-interface#1085

• Fixed wording on radio inputs page. Graylog2/graylog2-web-interface#1077

• Fixed formatting on indices page. Graylog2/graylog2-web-interface#1086

• Improved error handling in stream rule form. Graylog2/graylog2-web-interface#1076

• Fixed time range selection problem for the sources page. Graylog2/graylog2-web-interface#1080

130 Chapter 19. Changelog

https://www.graylog.org/graylog-v1-0-rc-1-has-been-released/
https://github.com/Graylog2/graylog2-server/issues/915
https://github.com/Graylog2/graylog2-server/issues/914
https://github.com/Graylog2/graylog2-web-interface/issues/1058
https://github.com/Graylog2/graylog2-server/issues/913
https://github.com/Graylog2/graylog2-web-interface/issues/1056
https://github.com/Graylog2/graylog2-server/issues/918
https://github.com/Graylog2/graylog2-server/issues/919
https://github.com/Graylog2/graylog2-web-interface/issues/1075
https://github.com/Graylog2/graylog2-server/issues/924
https://github.com/Graylog2/graylog2-web-interface/issues/1072
https://github.com/Graylog2/graylog2-server/issues/921
https://github.com/Graylog2/graylog2-web-interface/issues/1070
https://github.com/Graylog2/graylog2-web-interface/issues/1070
https://github.com/Graylog2/graylog2-server/issues/926
https://github.com/Graylog2/graylog2-web-interface/issues/1066
https://github.com/Graylog2/graylog2-server/issues/927
https://github.com/Graylog2/graylog2-server/issues/923
https://github.com/Graylog2/graylog2-server/issues/923
https://github.com/Graylog2/graylog2-server/issues/922
https://github.com/Graylog2/graylog2-web-interface/issues/1063
https://github.com/Graylog2/graylog2-web-interface/issues/1057
https://github.com/Graylog2/graylog2-web-interface/issues/1059
https://github.com/Graylog2/graylog2-web-interface/issues/1064
https://github.com/Graylog2/graylog2-web-interface/issues/1055
https://github.com/Graylog2/graylog2-web-interface/issues/1061
https://github.com/Graylog2/graylog2-web-interface/issues/1062
https://github.com/Graylog2/graylog2-web-interface/issues/1084
https://github.com/Graylog2/graylog2-web-interface/issues/1085
https://github.com/Graylog2/graylog2-web-interface/issues/1077
https://github.com/Graylog2/graylog2-web-interface/issues/1086
https://github.com/Graylog2/graylog2-web-interface/issues/1076
https://github.com/Graylog2/graylog2-web-interface/issues/1080

Graylog Documentation, Release 1.1.6

• Several improvements regarding permission checks for user creation. Graylog2/graylog2-web-interface#1088

• Do not show stream alert test button for reader users. Graylog2/graylog2-web-interface#1089

• Fixed node processing status not updating on the nodes page. Graylog2/graylog2-web-interface#1090

• Fixed filename handling on Windows. Graylog2/graylog2-server#928, Graylog2/graylog2-server#732

Graylog 1.0.0-beta.2

Released: 2015-01-21

https://www.graylog.org/graylog-v1-0-beta-3-has-been-released/

• Fixed stream alert creation. Graylog2/graylog2-server#891

• Suppress warning message when PID file doesn’t exist. Graylog2/graylog2-server#889

• Fixed an error on outputs page with missing output plugin. Graylog2/graylog2-server#894

• Change default heap and garbage collector settings in scripts.

• Add extractor information to log message about failing extractor.

• Fixed problem in SplitAndIndexExtractor. Graylog2/graylog2-server#896

• Improved rendering time for indices page. Graylog2/graylog2-web-interface#1060

• Allow user to edit its own preferences. Graylog2/graylog2-web-interface#1049

• Fixed updating stream attributes. Graylog2/graylog2-server#902

• Stream throughput now shows combined value over all nodes. Graylog2/graylog2-web-interface#1047

• Fixed resource leak in JVM PermGen memory. Graylog2/graylog2-server#907

• Update to gelfclient-1.1.0 to fix DNS resolving issue. Graylog2/graylog2-server#882

• Allow arbitrary characters in user names (in fact in any resource url). Graylog2/graylog2-web-interface#1005,
Graylog2/graylog2-web-interface#1006

• Fixed search result CSV export. Graylog2/graylog2-server#901

• Skip GC collection notifications for parallel collector. Graylog2/graylog2-server#899

• Shorter reconnect timeout for Radio AMQP connections. Graylog2/graylog2-server#900

• Fixed random startup error in Radio. Graylog2/graylog2-server#911

• Fixed updating an alert condition. Graylog2/graylog2-server#912

• Add system notifications for journal related warnings. Graylog2/graylog2-server#897

• Add system notifications for failing outputs. Graylog2/graylog2-server#741

• Improve search result pagination. Graylog2/graylog2-web-interface#834

• Improved regex error handling in extractor testing. Graylog2/graylog2-web-interface#1044

• Wrap long names for node metrics. Graylog2/graylog2-web-interface#1028

• Fixed node information progress bars. Graylog2/graylog2-web-interface#1046

• Improve node buffer utilization readability. Graylog2/graylog2-web-interface#1046

• Fixed username alert receiver form field. Graylog2/graylog2-web-interface#1050

• Wrap long messages without break characters. Graylog2/graylog2-web-interface#1052

19.19. Graylog 1.0.0-beta.2 131

https://github.com/Graylog2/graylog2-web-interface/issues/1088
https://github.com/Graylog2/graylog2-web-interface/issues/1089
https://github.com/Graylog2/graylog2-web-interface/issues/1090
https://github.com/Graylog2/graylog2-server/issues/928
https://github.com/Graylog2/graylog2-server/issues/732
https://www.graylog.org/graylog-v1-0-beta-3-has-been-released/
https://github.com/Graylog2/graylog2-server/issues/891
https://github.com/Graylog2/graylog2-server/issues/889
https://github.com/Graylog2/graylog2-server/issues/894
https://github.com/Graylog2/graylog2-server/issues/896
https://github.com/Graylog2/graylog2-web-interface/issues/1060
https://github.com/Graylog2/graylog2-web-interface/issues/1049
https://github.com/Graylog2/graylog2-server/issues/902
https://github.com/Graylog2/graylog2-web-interface/issues/1047
https://github.com/Graylog2/graylog2-server/issues/907
https://github.com/Graylog2/graylog2-server/issues/882
https://github.com/Graylog2/graylog2-web-interface/issues/1005
https://github.com/Graylog2/graylog2-web-interface/issues/1006
https://github.com/Graylog2/graylog2-server/issues/901
https://github.com/Graylog2/graylog2-server/issues/899
https://github.com/Graylog2/graylog2-server/issues/900
https://github.com/Graylog2/graylog2-server/issues/911
https://github.com/Graylog2/graylog2-server/issues/912
https://github.com/Graylog2/graylog2-server/issues/897
https://github.com/Graylog2/graylog2-server/issues/741
https://github.com/Graylog2/graylog2-web-interface/issues/834
https://github.com/Graylog2/graylog2-web-interface/issues/1044
https://github.com/Graylog2/graylog2-web-interface/issues/1028
https://github.com/Graylog2/graylog2-web-interface/issues/1046
https://github.com/Graylog2/graylog2-web-interface/issues/1046
https://github.com/Graylog2/graylog2-web-interface/pull/1050
https://github.com/Graylog2/graylog2-web-interface/issues/1052

Graylog Documentation, Release 1.1.6

• Hide list of node plugins if there aren’t any plugins installed.

• Warn user before leaving page with unpinned graphs. Graylog2/graylog2-web-interface#808

Graylog 1.0.0-beta.2

Released: 2015-01-16

https://www.graylog.org/graylog-v1-0-0-beta2/

• SIGAR native libraries are now found correctly (for getting system information)

• plugins can now state if they want to run in server or radio

• Fixed LDAP settings testing. Graylog2/graylog2-web-interface#1026

• Improved RFC5425 syslog message parsing. Graylog2/graylog2-server#845

• JVM arguments are now being logged on start. Graylog2/graylog2-server#875

• Improvements to log messages when Elasticsearch connection fails during start.

• Fixed an issue with AMQP transport shutdown. Graylog2/graylog2-server#874

• After index cycling the System overview page could be broken. Graylog2/graylog2-server#880

• Extractors can now be edited. Graylog2/graylog2-web-interface#549

• Fixed saving user preferences. Graylog2/graylog2-web-interface#1027

• Scripts now return proper exit codes. Graylog2/graylog2-server#886

• Grok patterns can now be uploaded in bulk. Graylog2/graylog2-server#377

• During extractor creation the test display could be offset. Graylog2/graylog2-server#804

• Performance fix for the System/Indices page. Graylog2/graylog2-web-interface#1035

• A create dashboard link was shown to reader users, leading to an error when followed. Graylog2/graylog2-web-
interface#1032

• Content pack section was shown to reader users, leading to an error when followed. Graylog2/graylog2-web-
interface#1033

• Failing stream outputs were being restarted constantly. Graylog2/graylog2-server#741

Graylog2 0.92.4

Released: 2015-01-14

https://www.graylog.org/graylog2-v0-92-4/

• [SERVER] Ensure that Radio inputs can only be started on server nodes (Graylog2/graylog2-server#843)

• [SERVER] Avoid division by zero when finding rotation anchor in the time-based rotation strategy
(Graylog2/graylog2-server#836)

• [SERVER] Use username as fallback if display name in LDAP is empty (Graylog2/graylog2-server#837)

132 Chapter 19. Changelog

https://github.com/Graylog2/graylog2-web-interface/issues/808
https://www.graylog.org/graylog-v1-0-0-beta2/
https://github.com/Graylog2/graylog2-web-interface/issues/1026
https://github.com/Graylog2/graylog2-server/issues/845
https://github.com/Graylog2/graylog2-server/issues/875
https://github.com/Graylog2/graylog2-server/issues/874
https://github.com/Graylog2/graylog2-server/issues/880
https://github.com/Graylog2/graylog2-web-interface/issues/549
https://github.com/Graylog2/graylog2-web-interface/issues/1027
https://github.com/Graylog2/graylog2-server/pull/886
https://github.com/Graylog2/graylog2-server/issues/377
https://github.com/Graylog2/graylog2-server/issues/804
https://github.com/Graylog2/graylog2-web-interface/issues/1035
https://github.com/Graylog2/graylog2-web-interface/issues/1032
https://github.com/Graylog2/graylog2-web-interface/issues/1032
https://github.com/Graylog2/graylog2-web-interface/issues/1033
https://github.com/Graylog2/graylog2-web-interface/issues/1033
https://github.com/Graylog2/graylog2-server/issues/741
https://www.graylog.org/graylog2-v0-92-4/
https://github.com/Graylog2/graylog2-server/issues/843
https://github.com/Graylog2/graylog2-server/issues/836
https://github.com/Graylog2/graylog2-server/issues/837

Graylog Documentation, Release 1.1.6

Graylog 1.0.0-beta.1

Released: 2015-01-12

https://www.graylog.org/graylog-v1-0-0-beta1/

• Message Journaling

• New Widgets

• Grok Extractor Support

• Overall stability and resource efficiency improvements

• Single binary for graylog2-server and graylog2-radio

• Inputs are now editable

• Order of field charts rendered inside the search results page is now maintained.

• Improvements in focus and keyboard behaviour on modal windows and forms.

• You can now define whether to disable expensive, frequent real-time updates of the UI in the settings of each
user. (For example the updating of total messages in the system)

• Experimental search query auto-completion that can be enabled in the user preferences.

• The API browser now documents server response payloads in a better way so you know what to expect as an
answer to your call.

• Now using the standard Java ServiceLoader for plugins.

Graylog2 0.92.3

Released: 2014-12-23

https://www.graylog.org/graylog2-v0-92-3/

• [SERVER] Removed unnecessary instrumentation in certain places to reduce GC pressure caused by many short
living objects (Graylog2/graylog2-server#800)

• [SERVER] Limit Netty worker thread pool to 16 threads by default (see
rest_worker_threads_max_pool_size in graylog2.conf

• [WEB] Fixed upload of content packs when a URI path prefix (application.context in graylog2-web-
interface.conf) is being used (Graylog2/graylog2-web-interface#1009)

• [WEB] Fixed display of metrics of type Counter (Graylog2/graylog2-server#795)

Graylog2 0.92.1

Released: 2014-12-11

https://www.graylog.org/graylog2-v0-92-1/

• [SERVER] Fixed name resolution and overriding sources for network inputs.

• [SERVER] Fixed wrong delimiter in GELF TCP input.

• [SERVER] Disabled the output cache by default. The output cache is the source of all sorts of interesting
problems. If you want to keep using it, please read the upgrade notes.

19.22. Graylog 1.0.0-beta.1 133

https://www.graylog.org/graylog-v1-0-0-beta1/
https://www.graylog.org/graylog2-v0-92-3/
https://github.com/Graylog2/graylog2-server/issues/800
https://github.com/Graylog2/graylog2-server/blob/0.92.3/misc/graylog2.conf#L71-L72
https://github.com/Graylog2/graylog2-web-interface/blob/0.92.3/misc/graylog2-web-interface.conf.example#L25-L26
https://github.com/Graylog2/graylog2-web-interface/blob/0.92.3/misc/graylog2-web-interface.conf.example#L25-L26
https://github.com/Graylog2/graylog2-web-interface/issues/1009
https://github.com/Graylog2/graylog2-server/issues/795
https://www.graylog.org/graylog2-v0-92-1/

Graylog Documentation, Release 1.1.6

• [SERVER] Fixed message timestamps in GELF output.

• [SERVER] Fixed connection counter for network inputs.

• [SERVER] Added warning message if the receive buffer size (SO_RECV) couldn’t be set for network inputs.

• [WEB] Improved keyboard shortcuts with most modal dialogs (e. g. hitting Enter submits the form instead of
just closing the dialogs).

• [WEB] Upgraded to play2-graylog2 1.2.1 (compatible with Play 2.3.x and Java 7).

Graylog2 0.92.0

Released: 2014-12-01

https://www.graylog.org/graylog2-v0-92/

• [SERVER] IMPORTANT SECURITY FIX: It was possible to perform LDAP logins with crafted wildcards. (A
big thank you to Jose Tozo who discovered this issue and disclosed it very responsibly.)

• [SERVER] Generate a system notification if garbage collection takes longer than a configurable threshold.

• [SERVER] Added several JVM-related metrics.

• [SERVER] Added support for Elasticsearch 1.4.x which brings a lot of stability and resilience features to Elas-
ticsearch clusters.

• [SERVER] Made version check of Elasticsearch version optional. Disabling this check is not recommended.

• [SERVER] Added an option to disable optimizing Elasticsearch indices on index cycling.

• [SERVER] Added an option to disable time-range calculation for indices on index cycling.

• [SERVER] Lots of other performance enhancements for large setups (i.e. involving several Radio nodes and
multiple Graylog2 Servers).

• [SERVER] Support for Syslog Octet Counting, as used by syslog-ng for syslog via TCP (#743)

• [SERVER] Improved support for structured syslog messages (#744)

• [SERVER] Bug fixes regarding IPv6 literals in mongodb_replica_set and elastic-
search_discovery_zen_ping_unicast_hosts

• [WEB] Added additional details to system notification about Elasticsearch max. open file descriptors.

• [WEB] Fixed several bugs and inconsistencies regarding time zones.

• [WEB] Improved graphs and diagrams

• [WEB] Allow to update dashboards when browser window is not on focus (#738)

• [WEB] Bug fixes regarding timezone handling

• Numerous internal bug fixes

Graylog2 0.92.0-rc.1

Released: 2014-11-21

https://www.graylog.org/graylog2-v0-92-rc-1/

• [SERVER] Generate a system notification if garbage collection takes longer than a configurable threshold.

134 Chapter 19. Changelog

https://www.graylog.org/graylog2-v0-92/
https://www.graylog.org/graylog2-v0-92-rc-1/

Graylog Documentation, Release 1.1.6

• [SERVER] Added several JVM-related metrics.

• [SERVER] Added support for Elasticsearch 1.4.x which brings a lot of stability and resilience features to Elas-
ticsearch clusters.

• [SERVER] Made version check of Elasticsearch version optional. Disabling this check is not recommended.

• [SERVER] Added an option to disable optimizing Elasticsearch indices on index cycling.

• [SERVER] Added an option to disable time-range calculation for indices on index cycling.

• [SERVER] Lots of other performance enhancements for large setups (i. e. involving several Radio nodes and
multiple Graylog2 Servers).

• [WEB] Upgraded to Play 2.3.6.

• [WEB] Added additional details to system notification about Elasticsearch max. open file descriptors.

• [WEB] Fixed several bugs and inconsistencies regarding time zones.

• Numerous internal bug fixes

Graylog2 0.91.3

Released: 2014-11-05

https://www.graylog.org/graylog2-v0-90-3-and-v0-91-3-has-been-released/

• Fixed date and time issues related to DST changes

• Requires Elasticsearch 1.3.4; Elasticsearch 1.3.2 had a bug that can cause index corruptions.

• The mongodb_replica_set configuration variable now supports IPv6

• Messages read from the on-disk caches could be stored with missing fields

Graylog2 0.91.3

Released: 2014-11-05

https://www.graylog.org/graylog2-v0-90-3-and-v0-91-3-has-been-released/

• Fixed date and time issues related to DST changes

• The mongodb_replica_set configuration variable now supports IPv6

• Messages read from the on-disk caches could be stored with missing fields

Graylog2 0.92.0-beta.1

Released: 2014-11-05

https://www.graylog.org/graylog2-v0-92-beta-1/

• Content packs

• [SERVER] SSL/TLS support for Graylog2 REST API

• [SERVER] Support for time based retention cleaning of your messages. The old message count based approach
is still the default.

19.27. Graylog2 0.91.3 135

https://www.graylog.org/graylog2-v0-90-3-and-v0-91-3-has-been-released/
https://www.graylog.org/graylog2-v0-90-3-and-v0-91-3-has-been-released/
https://www.graylog.org/graylog2-v0-92-beta-1/

Graylog Documentation, Release 1.1.6

• [SERVER] Support for Syslog Octet Counting, as used by syslog-ng for syslog via TCP (Graylog2/graylog2-
server#743)

• [SERVER] Improved support for structured syslog messages (Graylog2/graylog2-server#744)

• [SERVER] Bug fixes regarding IPv6 literals in mongodb_replica_set and
elasticsearch_discovery_zen_ping_unicast_hosts

• [WEB] Revamped “Sources” page in the web interface

• [WEB] Improved graphs and diagrams

• [WEB] Allow to update dashboards when browser window is not on focus (Graylog2/graylog2-web-
interface#738)

• [WEB] Bug fixes regarding timezone handling

• Numerous internal bug fixes

Graylog2 0.91.1

Released: 2014-10-17

https://www.graylog.org/two-new-graylog2-releases/

• Messages written to the persisted master caches were written to the system with unreadable timestamps, leading
to

• errors when trying to open the message.

• Extractors were only being deleted from running inputs but not from all inputs

• Output plugins were not always properly loaded

• You can now configure the alert_check_interval in your graylog2.conf

• Parsing of configured Elasticsearch unicast discovery addresses could break when including spaces

Graylog2 0.90.1

Released: 2014-10-17

https://www.graylog.org/two-new-graylog2-releases/

• Messages written to the persisted master caches were written to the system with unreadable timestamps, leading
to errors when trying to open the message.

• Extractors were only being deleted from running inputs but not from all inputs

• Output plugins were not always properly loaded

• You can now configure the alert_check_interval in your graylog2.conf

• Parsing of configured Elasticsearch unicast discovery addresses could break when including spaces

136 Chapter 19. Changelog

https://github.com/Graylog2/graylog2-server/pull/743
https://github.com/Graylog2/graylog2-server/pull/743
https://github.com/Graylog2/graylog2-server/pull/744
https://github.com/Graylog2/graylog2-web-interface/issues/738
https://github.com/Graylog2/graylog2-web-interface/issues/738
https://www.graylog.org/two-new-graylog2-releases/
https://www.graylog.org/two-new-graylog2-releases/

Graylog Documentation, Release 1.1.6

Graylog2 0.91.0-rc.1

Released: 2014-09-23

https://www.graylog.org/graylog2-v0-90-has-been-released/

• Optional ElasticSearch v1.3.2 support

Graylog2 0.90.0

Released: 2014-09-23

https://www.graylog.org/graylog2-v0-90-has-been-released/

• Real-time data forwarding to Splunk or other systems

• Alert callbacks for greater flexibility

• New disk-based architecture for buffering in load spike situations

• Improved graphing

• Plugin API

• Huge performance and stability improvements across the whole stack

• Small possibility of losing messages in certain scenarios has been fixed

• Improvements to internal logging from threads to avoid swallowing Graylog2 error messages

• Paused streams are no longer checked for alerts

• Several improvements to timezone handling

• JavaScript performance fixes in the web interface and especially a fixed memory leak of charts on dashboards

• The GELF HTTP input now supports CORS

• Stream matching now has a configurable timeout to avoid stalling message processing in case of too complex
rules or erroneous regular expressions

• Stability improvements for Kafka and AMQP inputs

• Inputs can now be paused and resumed

• Dozens of bug fixes and other improvements

Graylog2 0.20.3

Released: 2014-08-09

https://www.graylog.org/graylog2-v0-20-3-has-been-released/

• Bugfix: Storing saved searches was not accounting custom application contexts

• Bugfix: Editing stream rules could have a wrong a pre-filled value

• Bugfix: The create dashboard link was shown even if the user has no permission to so. This caused an ugly error
page because of the missing permissions.

• Bugfix: graylog2-radio could lose numeric fields when writing to the message broker

19.32. Graylog2 0.91.0-rc.1 137

https://www.graylog.org/graylog2-v0-90-has-been-released/
https://www.graylog.org/graylog2-v0-90-has-been-released/
https://www.graylog.org/graylog2-v0-20-3-has-been-released/

Graylog Documentation, Release 1.1.6

• Better default batch size values for the Elasticsearch output

• Improved rest_transport_uri default settings to avoid confusion with loopback interfaces

• The deflector index is now also using the configured index prefix

Graylog2 0.20.2

Released: 2014-05-24

https://www.graylog.org/graylog2-v0-20-2-has-been-released/

• Search result highlighting

• Reintroduces AMQP support

• Extractor improvements and sharing

• Graceful shutdowns, Lifecycles, Load Balancer integration

• Improved stream alert emails

• Alert annotations

• CSV exports via the REST API now support chunked transfers and avoid heap size problems with huge result
sets

• Login now redirects to page you visited before if there was one

• More live updating information in node detail pages

• Empty dashboards no longer show lock/unlock buttons

• Global inputs now also show IO metrics

• You can now easily copy message IDs into native clipboard with one click

• Improved message field selection in the sidebar

• Fixed display of floating point numbers in several places

• Now supporting application contexts in the web interface like http://example.org/graylog2

• Several fixes for LDAP configuration form

• Message fields in the search result sidebar now survive pagination

• Only admin users are allowed to change the session timeout for reader users

• New extractor: Copy whole input

• New converters: uppercase/lowercase, flexdate (tries to parse any string as date)

• New stream rule to check for presence or absence of fields

• Message processing now supports trace logging

• Better error message for ES discovery problems

• Fixes to GELF HTTP input and it holding open connections

• Some timezone fixes

• CSV exports now only contain selected fields

• Improvements for bin/graylog* control scripts

• UDP inputs now allow for custom receive buffer sizes

138 Chapter 19. Changelog

https://www.graylog.org/graylog2-v0-20-2-has-been-released/

Graylog Documentation, Release 1.1.6

• Numeric extractor converter now supports floating point values

• Bugfix: Several small fixes to system notifications and closing them

• Bugfix: Carriage returns were not escaped properly in CSV exports

• Bugfix: Some AJAX calls redirected to the startpage when they failed

• Bugfix: Wrong sorting in sources table

• Bugfix: Quickvalues widget was broken with very long values

• Bugfix: Quickvalues modal was positioned wrong in some cases

• Bugfix: Indexer failures list could break when you had a lot of failures

• Custom application prefix was not working for field chart analytics

• Bugfix: Memory leaks in the dashboards

• Bugfix: NullPointerException when Elasticsearch discovery failed and unicast discovery was disabled

• Message backlog in alert emails did not always include the correct number of messages

• Improvements for message outputs: No longer only waiting for filled buffers but also flushing them regularly.
This avoids problems that make Graylog2 look like it misses messages in cheap benchmark scenarios combined
with only little throughput.

19.35. Graylog2 0.20.2 139

	Architectural considerations
	Minimum setup
	Bigger production setup
	Highly available setup with Graylog Radio

	Installing Graylog
	Virtual Machine Appliances
	The graylog-ctl script
	Operating System Packages
	Chef, Puppet, Ansible, Vagrant
	Docker
	Vagrant
	OpenStack
	Amazon Web Services
	Microsoft Windows
	Manual Setup

	Configuring and tuning Elasticsearch
	Configuration
	Cluster Status explained

	Sending in log data
	What are Graylog message inputs?
	Content packs
	Syslog
	GELF / Sending from applications
	Microsoft Windows
	Heroku
	Ruby on Rails
	Raw/Plaintext inputs
	JSON path from HTTP API input
	Reading from files

	Graylog Collector
	Installation
	Configuration
	Running Graylog Collector
	Command Line Options
	Troubleshooting

	Search query language
	Syntax
	Escaping
	Time frame selector
	Search result highlighting

	Streams
	What are streams?
	Alerts
	Outputs
	Use cases
	How are streams processed internally?
	Stream Processing Runtime Limits
	Programmatic access via the REST API
	FAQs

	Dashboards
	Why dashboards matter
	How to use dashboards
	Examples
	Widgets from streams
	Modifying dashboards
	Dashboard permissions

	Extractors
	The problem explained
	Graylog extractors explained
	The extractor directory
	Using regular expressions to extract data
	Using Grok patterns to extract data
	Normalization

	Message rewriting with Drools
	Getting Started
	Example rules file
	Parsing Message and adding fields

	Load balancer integration
	Load balancer state
	Graceful shutdown
	Web Interface

	The Graylog index model explained
	Overview
	Eviction of indices and messages
	Keeping the metadata in synchronisation
	Manually cycling the deflector

	Indexer failures and dead letters
	Indexer failures
	Dead letters
	Common indexer failure reasons

	Plugins
	General information
	Creating a plugin skeleton
	Example Alarm Callback plugin
	Building plugins
	Installing and loading plugins

	External dashboards
	CLI stream dashboard
	Browser stream dashboard

	Graylog Marketplace
	GitHub integration
	General best practices
	Contributing plug-ins
	Contributing content packs
	Contributing GELF libraries
	Contributing other content

	Frequently asked questions
	General
	Message parsing

	The thinking behind the Graylog architecture and why it matters to you
	A short history of Graylog
	The log management market today
	The future

	Changelog
	Graylog 1.1.6
	Graylog 1.1.5
	Graylog 1.1.4
	Graylog 1.1.3
	Graylog 1.1.2
	Graylog 1.1.1
	Graylog 1.1.0
	Graylog 1.1.0-rc.3
	Graylog 1.1.0-rc.1
	Graylog 1.1.0-beta.3
	Graylog 1.1.0-beta.2
	Graylog 1.0.2
	Graylog 1.0.1
	Graylog 1.0.0
	Graylog 1.0.0-rc.4
	Graylog 1.0.0-rc.3
	Graylog 1.0.0-rc.2
	Graylog 1.0.0-rc.1
	Graylog 1.0.0-beta.2
	Graylog 1.0.0-beta.2
	Graylog2 0.92.4
	Graylog 1.0.0-beta.1
	Graylog2 0.92.3
	Graylog2 0.92.1
	Graylog2 0.92.0
	Graylog2 0.92.0-rc.1
	Graylog2 0.91.3
	Graylog2 0.91.3
	Graylog2 0.92.0-beta.1
	Graylog2 0.91.1
	Graylog2 0.90.1
	Graylog2 0.91.0-rc.1
	Graylog2 0.90.0
	Graylog2 0.20.3
	Graylog2 0.20.2

